Glass Physics and Chemistry

, Volume 41, Issue 6, pp 650–655 | Cite as

Synthesis and study of nanoceramics of the spinel class

  • L. V. Morozova
  • M. V. Kalinina
  • I. A. Drozdova
  • I. G. Polyakova
  • O. A. Shilova
Article

Abstract

Based on the method of combined crystallization, a low-temperature technology for the synthesis of nanocrystalline compounds with a spinel structure (MgAl2O4, MgCr2O4, and NiCo2O4) has been developed. The effect of ultrasonic treatment on the dispersity of crystal hydrates formed during synthesis has been demonstrated. Mesoporous ceramic samples of MgAl2O4 and MgCr2O4 with bimodal pore size distribution have been synthesized. The temperature dependence of the specific electrical conductivity of spinels has been studied and it has been established that the conductivity of the inverted spinel (NiCo2O4) is substantially higher than that of regular spinels (MgAl2O4, MgCr2O4).

Keywords

spinel combined crystallization ultrasound porosity electric conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Technical Ceramics), Moscow: Nauka, 1993.Google Scholar
  2. 2.
    Klym, G.I., Ingram, A., Gadzaman, I.V., Shpotyuk, O.I., and Vakiv, N.M., Positron annihilation spectroscopy as applied to the monitoring of water absorption processes in the nanoporous ceramics MgAl2O4, Tekhnol. Konstr. Elektron. Appar., 2006, no. 5, pp. 50–52.Google Scholar
  3. 3.
    Pingale, S.S., Patil, S.F., Vinod, M.P., Pathak, G., and Vijayamohanan, K., Mechanism of humidity sensing of Ti-doped MgCr2O4 ceramics, Mater. Chem. Phys., 1996, vol. 46, no. 1, pp. 72–76.CrossRefGoogle Scholar
  4. 4.
    Nayak, H. and Bhatta, D., Catalytic effects of magnesium chromite spinel on the decomposition of lanthanum oxalate, Thermochim. Acta, 2002, vol. 389, no. 1, pp. 109–119.CrossRefGoogle Scholar
  5. 5.
    Guene, M., Diagne Abdou Aziz, Fall Modou, Dieng Mor Mareme, and Poillerat, G., Preparation of nickelcobalt spinel oxides NixCO3–xO4. Comparison of two physical properties stemming from four different preparation methods and using carbon paste electrode, Bull. Chem. Soc. Ethiop., 2007, vol. 21, no. 2, pp. 255–262.CrossRefGoogle Scholar
  6. 6.
    Tharayil, N., Raveendran, R., Vaidyan, A.V., and Chithra, P.G., Optical, electrical, and structural studies of nickelcobalt oxide nanoparticles, Indian J. Eng. Mater. Sci., 2008, vol. 15, no. 6, pp. 489–496.Google Scholar
  7. 7.
    Morozova, L.V., Panova, T.I., and Lapshin, A.E., Low-temperature methods for synthesis of aluminomagnesium spinel and effect of yttrium oxide on its sintering, Russ. J. Appl. Chem., 1999, vol. 72, no. 4, pp. 567–571.Google Scholar
  8. 8.
    Bobkova, N.M., Radion, E.V., and Sokolovskii, E.A., Processes of phase formation in heat treatment of chemically precipitated mixtures for aluminummagnesium and chromiummagnesium spinels, Glass Ceram., 2006, vol. 63, no. 3, pp. 82–85.CrossRefGoogle Scholar
  9. 9.
    Lur’e, Yu.Yu., Spravochnik po analiticheskoi khimii (A Reference Book on Analytical Chemistry), Moscow: Khimiya, 1971.Google Scholar
  10. 10.
    Kalinina, M.V., Morozova, L.V., Khlamov, I.I., Egorova, T.L., Arsent’ev, M.Yu., Drozdova, I.A., and Shilova, O.A., Synthesis and investigation of nanoceramics based on cobalt metaniobate, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 578–583.CrossRefGoogle Scholar
  11. 11.
    Powder Diffraction File Database, ASTM, Newtown Square, Pennsylvania, United States: Joint Committee on Powder Diffraction Standards (JCPDS)—International Center for Diffraction Data.Google Scholar
  12. 12.
    Gosudarstvennyi standart Soyuza SSR (State Standard of the Soviet Union), Moscow: Izd. Standartov, 1981.Google Scholar
  13. 13.
    Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physico-chemical properties of the electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.Google Scholar
  14. 14.
    Kovalenko, A.S., Shilova, O.A., Morozova, L.V., Kalinina, M.V., Drozdova, I.A., and Arsent’ev, M.Yu., Feature of the synthesis and the study of nanocrystalline cobaltnickel spinel, Fiz. Khim. Stekla, 2014, vol. 40, no. 1, pp. 135–145.Google Scholar
  15. 15.
    Kovalenko, A.S., Shilova, O.A., Morozova, L.V., Kalinina, M.V., Drozdova, I.A., and Arsent’ev, M.Yu., Feature of the synthesis and the study of nanocrystalline cobaltnickel spinel, Glass Phys. Chem., 2014, vol. 40, no. 1, pp. 106–113.CrossRefGoogle Scholar
  16. 16.
    Khasanov, O.L., Dvilis, E.S., Polisadova, V.V., and Zykova, A.P., Effekty moshchnogo ul’trazvukovogo vozdeistviya na strukturu i svoistva nanomaterialov. Uchebnoe posobie (Effects of Powerful Ultrasonic Action on the Structure and Properties of Nanomaterials: A Textbook), Tomsk: Tomsk Polytechnic University, 2008.Google Scholar
  17. 17.
    Morozova, L.V., Lapshin, A.E., Popov, V.P., and Drozdova, I.A., Preparation and investigation of porous aluminosilicate ceramic materials, Glass Phys. Chem., 2008, no. 4, pp. 443–448.CrossRefGoogle Scholar
  18. 18.
    Dem’yanchuk, B.A. and Polishchuk, V.E., Synthesis of ferromagnetic oxides—Fillers of radiomaterials, Tekhnol. Konstr. Elektron. Appar., 2007, no. 5, pp. 61–64.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. V. Morozova
    • 1
  • M. V. Kalinina
    • 1
  • I. A. Drozdova
    • 1
  • I. G. Polyakova
    • 1
  • O. A. Shilova
    • 1
    • 2
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Electrotechnical University (LETI)St. PetersburgRussia

Personalised recommendations