Glass Physics and Chemistry

, Volume 41, Issue 4, pp 421–425 | Cite as

Crystalline structure, thermal expansion, and electrotransport properties of Bi0.91Ln0.09FeO3, BiFe0.91Mn0.09O3, and Bi0.91Ln0.09Fe0.91Mn0.09O3 (Ln = Nd, Ho) multiferroics



Bi0.91Ln0.09FeO3, BiFe0.91Mn0.09O3 and Bi0.91Ln0.09Fe0.91Mn0.09O3 (Ln = Nd, Ho) solid solutions have been synthesized, the parameters of their crystalline structure have been determined, and thermal expansion, electrical conductivity and thermal EMF have been studied at temperatures higher than the ambient temperature. It has been established that the solid solutions have a rhombohedral structure (space group R3c) and are semiconductors of the p-type, whose electrical conductivity is higher than that of nonsubstituted bismuth ferrite BiFeO3, the coefficient of thermal EMF sharply decreases at the partial substitution of iron with manganese, and the coefficient of linear thermal expansion varies in the ranges of (9.22–13.4) × 10–6 K–1. The parameters of charge carriers transfer in the (Bi,Ln)(Fe,Mn)O3 (Ln = Nd, Ho) phases have been determined.


perovskite multiferroic bismuth ferrite thermal expansion electrical conductivity thermal EMF 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pyatakov, A.P. and Zvezdin, A.K., Magnetoelectric and multiferroic media, Phys.—Usp., 2012, vol. 55, no. 6, pp. 557–581.CrossRefGoogle Scholar
  2. 2.
    Troyanchuk, I.O., Bushinsky, M.V., Chobot, A.N., Mantytskaya, O.S., and Tereshko, N.V., Weak ferromagnetism in BiFeO3-based multiferroics, JETP Lett., 2009, vol. 89, no. 4, pp. 180–184.CrossRefGoogle Scholar
  3. 3.
    Makoed, I.I., Poluchenie i fizicheskie svoistva mul’tiferroikov: Monografiya (Preparation and Physical Properties of Multiferroics: A Monograph), Brest: Brest State University, 2009.Google Scholar
  4. 4.
    Suresh, P. and Srinath, S., Observation of high coercivity in multiferroic lanthanum doped BiFeO3, J. Alloys Compd., 2013, vol. 554, pp. 271–276.CrossRefGoogle Scholar
  5. 5.
    Sati, P., Arora, M., Chauhan, S., Kumar, M., and Chhoker, S., Effect of Dy substitution on structural, magnetic and optical properties of BiFeO 3 ceramics, J. Phys. Chem. Solids, 2014, vol. 75, no. 1, pp. 105–108.CrossRefGoogle Scholar
  6. 6.
    Kothari, D., Reddy, V.R., Gupta, A., Phase, D.M., Lakshmi, N., Deshpande, S.K., and Awasthi, A.M., Study of the effect of Mn on the BiFeO3 system, J. Phys.: Condens. Matter, 2007, vol. 19, article 136202 (8 pages).Google Scholar
  7. 7.
    Kumar, A. and Yadav, K.L., A systematic study on magnetic, dielectric, and magnetocapacitance properties of Ni doped bismuth ferrite, J. Phys. Chem. Solids, 2011, vol. 72, no. 11, pp. 1189–1194.CrossRefGoogle Scholar
  8. 8.
    Ivanova, V.V., Gagulin, V.V., Korchagina, S.K., Shevchuk, Yu.A., and Bogatko, V.V., Synthesis and properties of BiFeO3-DyMnO3, Inorg. Mater., 2003, vol. 79, no. 7, pp. 745–748.CrossRefGoogle Scholar
  9. 9.
    Klyndyuk, A.I., Chizhova, E.A., Zatyupo, A.A., Bashkirov, L.A., Gusarov, V.V., and Tugova, E.A., Synthesis, structure, and physicochemical properties of solid solutions in the quasi-binary system BiFeO3-PrCoO3, Vestsi Nats. Akad. Navuk Belarusi, Ser. Khim. Navuk, 2012, no. 4, pp. 5–9.Google Scholar
  10. 10.
    Zatsiupa, A.A., Bashkirov, L.A., Petrov, G.S., Lobanovskii, L.S., and Trukhanov, S.V., Magnetic properties of ferritescobaltites Bi1-xLaxFe1-xCoxO3 (1.0 ≥ x ≥ 0.7) with a perovskite structure, Glass Phys. Chem., 2013, vol. 39, no. 5, pp. 589–596.CrossRefGoogle Scholar
  11. 11.
    Klyndyuk, A.I. and Chizhova, Ye.A., Thermoelectric properties of the layered oxides LnBaCu(Co)FeO5+δ (Ln = La, Nd, Sm, Gd), Funct. Mater., 2009, vol. 16, no. 1, pp. 17–22.Google Scholar
  12. 12.
    Klyndyuk, A.I. and Chizhova, E.A., Structure and properties of solid solutions of La1-xPrxBaCuFeO5+δ, Glass Phys. Chem., 2012, vol. 38, no. 2, pp. 234–239.CrossRefGoogle Scholar
  13. 13.
    Morozov, M.I., Iomanova, N.A., and Gusarov, V.V., Specific features of BiFeO3 formation of a mixture of bismuth(III) and iron(III) oxides, Russ. J. Gen. Chem., 2003, vol. 73, no. 11, pp. 1676–1680.CrossRefGoogle Scholar
  14. 14.
    Bernardo, M.S., Jardiel, T., Peliteado, M., Caballero, A.C., and Villegas, M., Reaction pathways in the solid state synthesis of multiferroic BiFeO3, J. Eur. Ceram. Soc., 2011, vol. 31, no. 16, pp. 3047–3053.CrossRefGoogle Scholar
  15. 15.
    Moreau, J.M., Michel, C., Gerson, R., and James, W.J., Ferroelectric BiFeO3 X-ray and neutron diffraction study, J. Phys. Chem. Solids, 1971, vol. 32, no. 6, pp. 1315–1320.CrossRefGoogle Scholar
  16. 16.
    Shannon, R.D. and Prewitt, C.T., Revised values of effective ionic radii, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25B, pp. 946–960.CrossRefGoogle Scholar
  17. 17.
    Annapu, Reddy V., Pathak, N.P., and Nath, R., Particle size dependent magnetic properties and phase transitions in multiferroic BiFeO3 nano-particles, J. Alloys Compd., 2012, vol. 543, pp. 206–212.CrossRefGoogle Scholar
  18. 18.
    Yasin Shami, M., Awan, M.S., and Anis-urRehman, M., Phase pure synthesis of BiFeO3 nanopowders using diverse precursor via co-precipitation method, J. Alloys Compd., 2011, vol. 509, pp. 10139–10144.CrossRefGoogle Scholar
  19. 19.
    Koshibae, W., Tsutsui, K., and Maekawa, S., Thermopower in cobalt oxides, Phys. Rev. B: Condens. Matter, 2000, vol. 62, no. 11, pp. 6869–6872.CrossRefGoogle Scholar
  20. 20.
    Mott, N. and Davis, E., Electronic Processes in NonCrystalline Materials, Oxford University Press, Oxford, 1979. Translated under the title Elektronnye protsessy v nekristallicheskikh veshchestvakh, Moscow: Mir, 1982.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Belarusian State Technological UniversityMinskBelarus

Personalised recommendations