Glass Physics and Chemistry

, Volume 41, Issue 3, pp 334–339 | Cite as

Hydrogenated silicon oxycarbonitride films. Part III. Thermodynamic modeling of the Si-C-N-O-H system

Article
  • 38 Downloads

Abstract

The thermodynamic modeling of the deposition of the condensed phase of a complex composition has been performed in the Si-C-N-O-H system in the broad temperature range of 300–1300 K under total pressure P total 0 = 6−7×10−2 Torr and residual air pressure in reactor P res = 5 × 10−3 Torr using the initial gas mixtures of organosilicon compound, hexamethyldisilazane (HMDS), with nitrogen, oxygen, air mixture (O2 + 4N2), and a variable mixture of oxygen with nitrogen (O2 + xN2). The temperature boundaries of multiphase ranges, where one can anticipate the deposition of silicon oxycarbonitride, silicon oxycarbides, and silicon oxynitride, have been determined.

Keywords

thermodynamic modeling Si-C-N-O-H system hexamethyldisilazane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fainer, N.I., From organosilicon precursors to multifunctional silicon carbonitride, Russ. J. Gen. Chem., 2012, vol. 82, no. 1, pp. 43–52.CrossRefGoogle Scholar
  2. 2.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., Kesler, V.G., Ayupov, B.M., Rakhlin, V.I., and Voronkov, M.G., Tris(diethylamino)silane-A new precursor compound for obtaining layers of silicon carbonitride, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 15–26.CrossRefGoogle Scholar
  3. 3.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., Kesler, V.G., Maksimovskii, E.A., Ayupov, B.M., and Kuznetsov, F.A., Synthesis of silicon carbonitride dielectric films with improved optical and mechanical properties from tetramethyldisilazane, Glass Phys. Chem., 2013, vol. 39, no. 1, pp. 77–88.CrossRefGoogle Scholar
  4. 4.
    Zhang, D.H., Gao, Y., Wei, J., and Mo, Z.Q., Influence of silane partial pressure on the properties of amorphous SiCN films prepared by ECRCVD, Thin Solid Films, 2000, vols. 377–378, pp. 607–610.CrossRefGoogle Scholar
  5. 5.
    Chen, K.H., Wu, J.-J., Wen, C.Y., Chen, L.C., Fan, C.W., Kuo, P.F., Chen, Y.F., and Huang, Y.S., Wide-band-gap silicon carbon nitride films deposited by electron cyclotron resonance plasma chemical vapor deposition, Thin Solid Films, 1999, vols. 355–356, pp. 205–209.CrossRefGoogle Scholar
  6. 6.
    Gómez, F.J., Prieto, P., Elizalde, E., and Piqueras, J., SiCN alloys deposited by electron cyclotron resonance plasma chemical vapor deposition, Appl. Phys. Lett., 1996, vol. 69, no. 6, p. 773.CrossRefGoogle Scholar
  7. 7.
    Soto, G., Samano, E.C., Machorro, R., and Cota, L., Growth of SiC and SiCxNy films by pulsed laser ablation of SiC in Ar and N2 environments, J. Vac. Sci. Technol., A, 1998, vol. 16, no. 3, pp. 1311–1315.CrossRefGoogle Scholar
  8. 8.
    Jedrzejowski, P., Cizek, J., Amassian, A., Klemberg-Sapieha, J.E., Vlcek, J., and Martinu, L., Mechanical and optical properties of hard SiCN coatings prepared by PECVD, Thin Solid Films, 2004, vols. 447–448, pp. 201–207.CrossRefGoogle Scholar
  9. 9.
    Xie, E., Ma, Z., Lin, H., Lin, H., Zhang, Zh., and He, D., Preparation and characterization of SiCN films, Opt. Mater., 2003, vol. 23, nos. 1–2, pp. 151–156.CrossRefGoogle Scholar
  10. 10.
    Chen, C.W., Huang, C.C., Lin, Y.Y., Chen, L.C., Chen, K.H., and Su, W.F., Optical properties and photoconductivity of amorphous silicon carbon nitride thin film and its application for UV detection, Diamond Relat. Mater., 2005, vol. 14, nos. 3–7, pp. 1010–1013.CrossRefGoogle Scholar
  11. 11.
    Chen, C.W., Huang, C.C., Lin, Y.Y., Chen, L.C., and Chen, K.H., The affinity of Si-N and Si-C bonding in amorphous silicon carbon nitride (a-SiCN) thin film, Diamond Relat. Mater., 2005, vol. 14, nos. 3–4, pp. 1126–1130.CrossRefGoogle Scholar
  12. 12.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., and Maksimovskii, E.A., Use of hexamethylcyclotrisilazane for preparation of transparent films of complex compositions, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 274–283.CrossRefGoogle Scholar
  13. 13.
    Ionescu, E., Terzioglu, C., Linck, C., Kaspar, J., Navrotsky, A., and Riedel, R., Thermodynamic control of phase composition and crystallization of metalmodified silicon oxycarbides, J. Am. Ceram. Soc., 2013, vol. 96, no. 6, pp. 1899–1903.CrossRefGoogle Scholar
  14. 14.
    Golubenko, A.N., Kosinova, M.L., Titov, V.A., Titov, A.A., and Kuznetsov, F.A., On thermodynamic equilibria of solid BN and gas phases in the B-N-H-Cl-He system, Thin Solid Films, 1997, vol. 293, nos. 1–2, pp. 11–16.CrossRefGoogle Scholar
  15. 15.
    Kuznetsov, F.A., Titov, V.A., Titov, A.A., and Chernyavskii, L.I., Data bank of properties of microelectronic materials, in Proceedings of the International Symposium on Advanced Materials, Tsukuba, Japan, September 2430, 1995, Tsukuba, 1995, pp. 24–30.Google Scholar
  16. 16.
    Fainer, N.I., Plekhanov, A.G., Rumyantsev, Yu.M., Maksimovskii, E.A., and Shayapov, V.R., Films of hydrogenated silicon oxycarbonitride: Part I. Chemical and phase compositions, Glass Phys. Chem., 2014, vol. 40, no. 5, pp. 570–577.CrossRefGoogle Scholar
  17. 17.
    Fainer, N.I., Plekhanov, A.G., Rumyantsev, Yu.M., Yushina, I.V., Shayapov, V.R., and Kichai, V.N., Hydrogenated silicon oxycarbonitride films: Part II. Physicochemical and functional properties, Glass Phys. Chem., 2014, vol. 40, no. 6, pp. 643–649.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. N. Golubenko
    • 1
  • N. I. Fainer
    • 2
  • E. F. Titova
    • 2
  1. 1.Novosibirsk National Research State UniversityNovosibirskRussia
  2. 2.Nikolaev Institute of Inorganic ChemistryRussian Academy of Sciences, Siberian BranchNovosibirskRussia

Personalised recommendations