Glass Physics and Chemistry

, Volume 41, Issue 2, pp 187–193 | Cite as

Template synthesis and water vapor adsorption by micro- and mesoporous silica gels with high specific surface area

  • I. S. Puzyrev
  • E. P. Sobina
  • L. V. Adamova
  • M. I. Kodess
  • S. V. Medvedevskikh


Micro- and mesoporous silica gels have been synthesized in the basic medium using a mixture of distilled primary alkylamines as a structure-forming agent. The silica gels’ porosity characteristics have been investigated by the method of nitrogen low-temperature adsorption. The specific surface area of mesoporous silica gels is in the range 1392–1568 m2/g, whereas for silica gels containing micropores (aside from mesopores) this value ranges from 887 to 1259 m2/g; the pore volumes are 0.68–0.79 cm3/g and 0.81–0.97 cm3/g, respectively. The 29Si NMR spectroscopy data demonstrate high degree of cohesiveness of the mesoporous silica gel and the predominant cohesiveness type (Q 4), while the type Q 3 characterizes samples containing both pore types. Adsorption of water vapor on the latter ones starts at lower relative vapor pressure in comparison with mesoporous samples.


mesoporous silica gels template synthesis water vapor adsorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singh, L.P., Bhattacharyya, S.K., Mishra, G., and Ahalawat, S., Functional role of cationic surfactant to control the nano size of silica powder, Appl. Nanosci., 2011, vol. 1, pp. 117–122.CrossRefGoogle Scholar
  2. 2.
    Kamashev, D.V., Synthesis, properties, and model of the formation of silica supramolecular structures, Glass Phys. Chem., 2012, vol. 38, no. 3, pp. 307–314.CrossRefGoogle Scholar
  3. 3.
    Cao, L., Shao, J.-G., Yang, Y.-B., Yang, Y.-X., and Liu, X.-N., Synthesis of mesoporous silica with cationicanionic surfactants, Glass Phys. Chem., 2010, vol. 36, no. 2, pp. 182–189.CrossRefGoogle Scholar
  4. 4.
    Trofimova, E.Yu., Kurdyukov, D.A., Kukushkina, Yu.A., Yagovkina, M.A., and Golubev, V.G., Synthesis of monodispersed mesoporous spheres of submicron size amorphous silica, Glass Phys. Chem., 2011, vol. 37, no. 4, pp. 378–384.CrossRefGoogle Scholar
  5. 5.
    Yanagashiwa, T., Shimizu, T., Kuroda, K., and Kato, C., The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials, Bull. Chem. Soc. Jpn., 1990, vol. 63, no. 4, pp. 988–992.CrossRefGoogle Scholar
  6. 6.
    Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., and Berk, J.S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature (London), 1992, vol. 359, pp. 710–712.CrossRefGoogle Scholar
  7. 7.
    Zhao, D., Huo, Q., Feng, J., Chmelka, B.F., and Stucky, G.D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, J. Am. Chem. Soc., 1998, vol. 120, pp. 6024–6036.CrossRefGoogle Scholar
  8. 8.
    Blin, J.L., Becue, A., Pauwels, B., Van Tendeloo, G., and Su, B.L., Non-ionic surfactant (C13EOm, m = 6, 12, and 18) for large pore mesoporous molecular sieves preparation, Microporous Mesoporous Mater., 2001, vols. 44–45, pp. 41–51.CrossRefGoogle Scholar
  9. 9.
    Leonard, A., Blin, J.L., Jacobs, P.A., Grandge, P., and Su, B.L., Chemistry of silica at different concentrations of non-ionic surfactant solutions: Effect of pH of the synthesis gel on the preparation of mesoporous silicas, Microporous Mesoporous Mater., 2003, vol. 63, pp. 59–73.CrossRefGoogle Scholar
  10. 10.
    Tanev, P. and Pinnavaia, T.J., A neutral templating route to mesoporous molecular sieves, Science (Washington), 1995, vol. 267, pp. 865–867.CrossRefGoogle Scholar
  11. 11.
    Zhang, W.Z., Pauly, T.R., and Pinnavaia, T.J., Tailoring the framework and textural mesopores of HMS molecular sieves through an electrically neutral (S0I0) assembly pathway, Chem. Mater., 1997, vol. 9, no. 11, pp. 2491–2498.CrossRefGoogle Scholar
  12. 12.
    Singh, P.S. and Kosuge, K., The synthesis of mesoporous silica spheres by octylamine templating, Chem. Lett., 1998, vol. 27, no. 1, pp. 101–102.CrossRefGoogle Scholar
  13. 13.
    Kosuge, K. and Singh, P.S., Mesoporous silica spheres via 1-alkylamine templating route, Microporous Mesoporous Mater., 2001, vol. 44, pp. 139–145.CrossRefGoogle Scholar
  14. 14.
    Kruk, M., Jaroniec, M., and Sayari, A., New insights into pore-size expansion of mesoporous silicates using long-chain amines, Microporous Mesoporous Mater., 2000, vols. 35–36, pp. 545–553.CrossRefGoogle Scholar
  15. 15.
    Pang, J.B., Qiu, K.Y., Xu, J.G., and Wei, Y., Synthesis of mesoporous silica materials via nonsurfactant ureatemplated sol-gel reactions, J. Inorg. Organomet. Polym., 2000, vol. 10, no. 1, pp. 39–49.CrossRefGoogle Scholar
  16. 16.
    Zeng, J.Y., Pang, J.B., Qiu, K.Y., and Wei, Y., Synthesis and characterization of mesoporous titania and silicatitania materials by urea templated sol-gel reactions, Microporous Mesoporous Mater., 2001, vol. 49, nos. 1–3, pp. 189–195.CrossRefGoogle Scholar
  17. 17.
    Zeng, J.Y., Pang, J.B., Qiu, K.Y., and Wei, Y., Synthesis of mesoporous silica materials via nonsurfactant templated sol-gel route by using mixture of organic compounds as template, J. Sol-Gel Sci. Technol., 2002, vol. 24, no. 1, pp. 81–88.CrossRefGoogle Scholar
  18. 18.
    Jung, J.H., Amaike, M., Nakashima, K., and Shinkai, S., Preparation of novel silica structures using a library of carbohydrate gel assemblies as templates for sol-gel transcription, J. Chem. Soc., Perkin Trans. 2, 2001, vol. 2, no. 10, pp. 1938–1943.Google Scholar
  19. 19.
    Venkatathri, N. and Nanjundan, S., Synthesis and characterization of a mesoporous silica microsphere from polystyrene, Mater. Chem. Phys., 2009, vol. 113, pp. 933–936.CrossRefGoogle Scholar
  20. 20.
    Venkatathri, N., Synthesis of mesoporous silica nanosphere using different templates, Solid State Commun., 2007, vol. 143, pp. 493–497.CrossRefGoogle Scholar
  21. 21.
    Li, H., Ai, M., Liu, B., Zheng, S., and Zong, G., Water vapor sorption on surfactant-templated porous silica xerogels, Microporous Mesoporous Mater., 2011, vol. 143, no. 1, pp. 1–5.CrossRefGoogle Scholar
  22. 22.
    Ohashi, F., Maeda, M., Inukai, K., Suzuki, M., and Tomura, S., Study on intelligent humidity control materials: Water vapor adsorption properties of mesostructured silica derived from amorphous fumed silica, J. Mater. Sci., 1999, vol. 34, no. 6, pp. 1341–1346.CrossRefGoogle Scholar
  23. 23.
    Li, X., Li, Z., Xia, Q., and Xi, H., Effects of pore sizes of porous silica gels on desorption activation energy of water vapour, Appl. Therm. Eng., 2007, vol. 27, pp. 869–876.CrossRefGoogle Scholar
  24. 24.
    Brunauer, S., Emett, P.H., and Teller, E.J., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319.CrossRefGoogle Scholar
  25. 25.
    Matos, J.R., Kruk, M., Mercuri, L.P., Jaroniec, M., Zhao, L., Kamiyama, T., Tarasaki, O., Pinnavaia, T.J., and Liu, Y., Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time, J. Am. Chem. Soc., 2003, vol. 125, no. 3, pp. 821–829.CrossRefGoogle Scholar
  26. 26.
    Kruk, M., Jaroniec, M., and Sayari, A., Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements, Langmuir, 1997, vol. 13, no. 23, pp. 6267–6273.CrossRefGoogle Scholar
  27. 27.
    Kruk, M., Celer, E.B., and Jaroniec, M., Exceptionally high stability of copolymer-templated ordered silica with large cage-like mesopores, Chem. Mater., 2004, vol. 16, no. 4, pp. 698–707.CrossRefGoogle Scholar
  28. 28.
    Zou, H., Wu, S., and Shen, J., Polymer/silica nanocomposites: Preparation, characterization, properties, and applications, Chem. Rev. (Washington), 2008, vol. 108, pp. 3893–3957.CrossRefGoogle Scholar
  29. 29.
    Ng, E.-P. and Mintova, S., Nanoporous materials with enhanced hydrophilicity and high water sorption capacity, Microporous Mesoporous Mater., 2008, vol. 114, pp. 1–26.CrossRefGoogle Scholar
  30. 30.
    Engelhardt, G. and Mitchel, D., High-Resolution Solid State NMR of Silicates and Zeolites, Chichester, United Kingdom: Wiley, 1987.Google Scholar
  31. 31.
    Ting, C.-C., Wu, H.-Y., Palani, A., Chiang, A.S.T., and Kao, H.-M., Facile synthesis and morphology control of highly ordered cubic mesoporous silica SBA-1 using short-chain dodecyltrimethylammonium chloride as the structure-directing agent, Microporous Mesoporous Mater., 2008, vol. 116, nos. 1–3, pp. 323–329.CrossRefGoogle Scholar
  32. 32.
    Massiot, D., Fayon, F., Capron, M., King, I., Le Calve, S., Alonso, B., Durand, J.-D., Bujoli, B., Gan, Z., and Hoatson, G., Modelling one- and two-dimensional solid-state NMR spectra, Magn. Reson. Chem., 2002, vol. 40, no. 1, pp. 70–76.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • I. S. Puzyrev
    • 1
  • E. P. Sobina
    • 2
  • L. V. Adamova
    • 3
  • M. I. Kodess
    • 1
  • S. V. Medvedevskikh
    • 2
  1. 1.Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Institute of MetrologyYekaterinburgRussia
  3. 3.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations