Glass Physics and Chemistry

, Volume 40, Issue 5, pp 570–577 | Cite as

Films of hydrogenated silicon oxycarbonitride. Part I. Chemical and phase composition

  • N. I. Fainer
  • A. G. Plekhanov
  • Yu. M. Rumyantsev
  • E. A. Maximovskii
  • V. R. Shayapov
  • A. G. Plekhanov
  • Yu. M. Rumyantsev
  • E. A. Maximovskii
  • V. R. Shayapov
Article

Abstract

The method of preparation of hydrogenated silicon oxycarbonitride films with variable composition SiC x N y O z : H by the plasma chemical vapor decomposition of a volatile organosilicon compound, 1,1,1,3,3,3-hexamethyldisilazane (enhanced to IUPAC, bis(trimethylsilyl)amine) in a gas phase containing nitrogen and oxygen in the temperature range of 373–973 K has been developed. It has been shown that nitrogen and oxygen provide the decrease in carbon content in films due to gas-phase reaction giving volatile products (CN)2, CH4, CO, and H2(H). The obtained SiC x N y O z : H films are nanocomposite, in the amorphous part of which the nanocrystals are distributed, which belong to the determined phases of the Si-C-N system, namely, α-Si3N4, α-Si3 − x C x N4, and graphite.

Keywords

silicon oxycarbonitride thin films plasma chemical synthesis nanocomposite films phases of the α- Si3 − xCxN4 family 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paloura, E.C., Kyo, Y., and Braun, W., On the effect of bonded hydrogen in the local microstructure of PECVD SiNx: H films, Physica B (Amsterdam, Neth.), 1995, vols. 208–209, pp. 562–564.CrossRefGoogle Scholar
  2. 2.
    Paloura, E.C., Mertens, A., Frentrup, W., Döbler, U., Knop, A., and Braun, W., Characterization of buried SiNx films with EXAFS and NEXAFS, Physica B (Amsterdam, Neth.), 1995, vols. 208–209, pp. 509–510.CrossRefGoogle Scholar
  3. 3.
    Dekkers, H.F.W., De Wolf, S., Agostinelli, G., Duerinckx, F., and Beaucarne, G., Requirements of PECVD SiNx: H layers for bulk passivation of mc-Si, Sol. Energy Mater. Sol. Cells, 2006, vol. 90, nos. 18–19, pp. 3244–3250.CrossRefGoogle Scholar
  4. 4.
    Lipiñski, M., Silicon nitride for photovoltaic application, Arch. Comput. Mater. Sci. Surf. Eng., 2010, vol. 46, no. 2, pp. 69–87.Google Scholar
  5. 5.
    Rebib, F., Tomasella, E., Bêche, E., Cellier, J., and Jacquet, M., FTIR and XPS investigations of a-SiOxNy thin films structure, J. Phys.: Conf. Ser., 2008, vol. 100,part 8, p. 082034.Google Scholar
  6. 6.
    Davazoglou, D., Optical absorption threshold of low pressure chemically vapor deposited silicon oxynitride films from SiCl2H2-NH3-N2O mixtures, Thin Solid Films, 2003, vol. 437, pp. 266–271.CrossRefGoogle Scholar
  7. 7.
    Pandey, R.K., Patil, L.S., Bange, J.P., Patil, D.R., Mahajan, A.M., Patil, D.S., and Gautam, D.K., Growth and characterization of SiON thin films by using thermal-CVD machine, Opt. Mater., 2004, vol. 25, pp. 1–7.CrossRefGoogle Scholar
  8. 8.
    Bae, Y.W., Gallois, B., Wilkens, B.J., and Olsen, J.E., Deposition and chemical composition of silicon oxynitride from methylsilazane in ammonia and nitrous oxide, J. Electrochem. Soc., 1998, vol. 145, no. 6, pp. 1902–1906.CrossRefGoogle Scholar
  9. 9.
    Kennou, S., Ladas, S., Paloura, E.C., and Kalomiros, J.A., Characterization of ex-situ hydrogenated amorphous SiC thin films by X-ray photoelectron spectroscopy, Appl. Surf. Sci., 1995, vol. 90, pp. 283–285.CrossRefGoogle Scholar
  10. 10.
    Tsang, C.F., Bliznetsov, V.N., and Su, Y.J., Study and improvement of electrical performance of 130 nm Cu/CVD low-k SiOCH interconnect related to via etch process, Microelectron. J., 2003, vol. 34, pp. 1051–1058.CrossRefGoogle Scholar
  11. 11.
    Vilmay, M., Roy, D., Volpi, F., and Chaix, J.-M., Characterization of low-k SiOCH dielectric for 45 nm technology and link between the dominant leakage path and the breakdown localization, Microelectron. Eng., 2008, vol. 8, pp. 2075–2078.CrossRefGoogle Scholar
  12. 12.
    Varga, T., Navrotsky, A., Moats, J.L., Morcos, R.M., Poli, F., Muller, K., Sahay, A., and Raj, R., Thermodynamically stable SixOyCz polymer-like amorphous ceramics, J. Am. Ceram. Soc., 2007, vol. 90, pp. 3213–3219.CrossRefGoogle Scholar
  13. 13.
    Saha, A. and Raj, R., Crystallization maps for SiCO amorphous ceramics, J. Am. Ceram. Soc., 2007, vol. 90, pp. 578–583.CrossRefGoogle Scholar
  14. 14.
    Cross, T.J., Raj, R., Prasad, S.V., and Tallant, D.R., Synthesis and tribological behavior of silicon oxycarbonitride thin films derived from poly(urea)methylvinylsilazane, Int. J. Appl. Ceram. Technol., 2006, vol. 3, pp. 113–126.CrossRefGoogle Scholar
  15. 15.
    Mandracci, P. and Ricciardi, C., Silicon-carbonoxynitrides grown by plasma-enhanced chemical vapor deposition technique, Thin Solid Films, 2007, vol. 515, pp. 7639–7642.CrossRefGoogle Scholar
  16. 16.
    Kityk, I.V. and Mandracci, P., Nonlinear optical effects in amporphous-like SiCON films, Phys. Lett. A, 2005, vol. 340, pp. 466–473.CrossRefGoogle Scholar
  17. 17.
    Fainer, N.I., Kosinova, M.L., Rumyantsev, Yu.M., and Kuznetsov, F.A., RPECVD thin silicon carbonitride films using hexamethyldisilazane, J. Phys. IV, 1999, vol. 9, pp. Pr8-769–Pr8-775.Google Scholar
  18. 18.
    Fainer, N.I., Kosinova, M.L., Rumyantsev, Yu.M., Maksimovskii, E.A, Kuznetsov, F.A., Kesler, V.G., Kirienko, V.V., Han Bao-Shan, and Lu Cheng, Synthesis and physicochemical properties of nanocrystalline silicon carbonitride films deposited by microwave plasma from organoelement compounds, Glass Phys. Chem., 2005, vol. 31, no. 4, pp. 427–432.CrossRefGoogle Scholar
  19. 19.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., and Maximovskii, E.A., Use of hexamethylcyclotrisilazane for preparation of transparent films of complex compositions, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 274–283.CrossRefGoogle Scholar
  20. 20.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., Kesler, V.G., Ayupov, B.M., Rakhlin, V.I., and Voronkov, M.G., Tris(diethylamino)silane—A new precursor compound for obtaining layers of silicon carbonitride, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 15–26.CrossRefGoogle Scholar
  21. 21.
    Rumyantsev, Yu.M., Fainer, N.I., Ayupov, B.M., and Rakhlin, V.I., Plasma-enhanced chemical deposition of nanocrystalline silicon carbonitride films from trimethyl(phenylamino)silane, Glass Phys. Chem., 2011, vol. 37, no. 3, pp. 316–321.CrossRefGoogle Scholar
  22. 22.
    Fainer, N.I., From organosilicon precursors to multifunctional silicon carbonitride, Russ. J. Gen. Chem., 2012, vol. 82, no. 1, pp. 43–52.CrossRefGoogle Scholar
  23. 23.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., Kesler, V.G., Maximovskii, E.A., Ayupov, B.M., and Kuznetsov, F.A., Synthesis of silicon carbonitride dielectric films with improved optical and mechanical properties from tetramethyldisilazane, Glass Phys. Chem., 2013, vol. 39, no. 1, pp. 77–88.CrossRefGoogle Scholar
  24. 24.
    Fainer, N.I., Kosinova, M.L., Rumyantsev, Yu.M., Maximovskii, E.A., and Kuznetsov, F.A., Thin silicon carbonitride films are perspective low-k materials, J. Phys. Chem. Solids, 2008, vol. 69, nos. 2–3, pp. 661–668.CrossRefGoogle Scholar
  25. 25.
    Fainer, N.I., Golubenko, A.N., Rumyantsev, Yu.M., and Maximovskii, E.A., Use of hexamethylcyclotrisilazane for preparation of transparent films of complex compositions, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 274–283.CrossRefGoogle Scholar
  26. 26.
    Fainer, N.I., Maximovskii, E.A., Rumyantsev, Yu.M., Kosinova, M.L., and Kuznetsov, F.A., Study of structure and phase composition of nanocrystal silicon carbonitride films, Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, vol. 470, nos. 1–2, pp. 193–197.CrossRefGoogle Scholar
  27. 27.
    Gao, P., Xu, J., Piao, Y., Ding, W., Wang, D., Deng, X., and Dong, C., Deposition of silicon carbon nitride thin films by microwave ECR plasma enhanced unbalance magnetron sputtering, Sur. Coat. Technol., 2007, vol. 201, pp. 5298–5301.CrossRefGoogle Scholar
  28. 28.
    Chang, S.-Y., Chang, J.-Y., Lin, S.-J., Tsai, H.-C., and Chang, Y.-S., Interface chemistry and adhesion strength between porous SiOCH low-k film and SiCN layers, J. Electrochem. Soc., 2008, vol. 155, pp. G39–G43.CrossRefGoogle Scholar
  29. 29.
    Anderson, D.R., in Analysis Silicones, Smith, A.L., Ed., New York: Willey-Interscience, 1974, chapter 10, pp. 100–105.Google Scholar
  30. 30.
    Ferrari, A.C. and Robertson, J., Interpretation of RAMAN spectra of disordered and amorphous carbon, Phys. Rev. B: Condens. Matter, 2000, vol. 61, no. 20, pp. 14095–14107.CrossRefGoogle Scholar
  31. 31.
    Tuinstra, F. and Koenig, J.L., Raman spectrum of graphite, J. Chem. Phys., 1970, vol. 53, pp. 1126–1130.CrossRefGoogle Scholar
  32. 32.
    Fainer, N.I. and Kosyakov, V.I., Phase composition of silicon carbonitride thin films prepared by plasma chemical decomposition of organosilicon compounds, J. Struct. Chem. 2015 (in press).Google Scholar
  33. 33.
    JCPDS International Center for Diffraction Data, 1988, Card no. 41-0360.Google Scholar
  34. 34.
    Kurlov, A.S. and Gusev, A.I., Determination of the particle sizes, microstrains, and degree of inhomogeneity in nanostructured materials from X-ray diffraction data, Glass Phys. Chem., 2007, vol. 33, no. 3, pp. 276–822.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. I. Fainer
    • 1
  • A. G. Plekhanov
    • 1
  • Yu. M. Rumyantsev
    • 1
  • E. A. Maximovskii
    • 1
  • V. R. Shayapov
    • 1
  • A. G. Plekhanov
    • 1
  • Yu. M. Rumyantsev
    • 1
  • E. A. Maximovskii
    • 1
  • V. R. Shayapov
    • 1
  1. 1.Nikolaev Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations