Glass Physics and Chemistry

, Volume 40, Issue 3, pp 283–287 | Cite as

A novel way to production yttrium glass microspheres for medical applications

  • Mohammad. R. Ghahramani
  • Adil. A. Garibov
  • Teymur. N. Agayev
  • Mohammad. A. Mohammadi


In this paper a novel method of producing yttrium aluminum silicate microspheres is reported. Yttrium aluminum silicate microspheres around 20–50 μm in size were obtained when an aqueous solution of Y(NO3)3 and Al(NO3)3 was added to tetraethyl orthosilicate (TEOS) and pumped into stirred silicone oil. The particles produced by this method are regularly shaped and very close to spherical. The amorphous structure, Y-O-Si bonds, spherical shapes, composition, and element distribution were investigated by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray fluorescence spectroscopy (XRF), carbon/sulfur analysis, and SEM/EDS mapping analysis. The results obtained demonstrate that the silicone oil spheroidization method is suitable for the production of yttrium aluminum silicate microspheres. This study also reveals that a high temperature is not required for the production of yttrium aluminum silicate microspheres.


yttrium microspheres brachytherapy microspheres seed source 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Day, D.E. and Ehrhardt, G.J., Radioactive Glass Microspheres, US Patent 5011677, 1988.Google Scholar
  2. 2.
    Erbe, E.M. and Day, D.E., Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation, J. Biomed. Mater. Res., 1993, vol. 27, no. 10, pp. 1301–1308.CrossRefGoogle Scholar
  3. 3.
    Kawashita, M., Miyaji, F., Kokubo, T., Takaoka, G.H., Yamada, I., Suzuki, Y., and Kajiyama, K., Preparation of glass for radiotherapy of cancer by P+ ion implantation at 100 keV, Nucl. Instrum. Methods Phys. Res., Sect. B, 1997, vol. 121, no. 1, pp. 323–327.CrossRefGoogle Scholar
  4. 4.
    Kawashita, M., Miyaji, F., Kokubo, T., Suzuki, Y., and Kajiyama, K., Preparation of phosphorus-containing silica glass microspheres for radiotherapy of cancer by ion implantation, J. Mater. Sci.: Mater. Med., 1999, vol. 10, no. 8, pp. 459–463.Google Scholar
  5. 5.
    Kawashita, M., Miyaji, F., Kokubo, T., Takaoka, G.H., Yamada, I., Suzuki, Y., and Inoue, M., Surface structure and chemical durability of P+-implanted Y2O3-Al2O3-SiO2 glass for radiotherapy of cancer, J. Non-Cryst. Solids, 1999, vol. 255, pp. 140–148.CrossRefGoogle Scholar
  6. 6.
    Kawashita, M., Takayama, Y., Kokubo, T., Takaoka, G.H., Araki, N., and Hiraoka, M., Enzymatic preparation of hollow yttrium oxide microspheres for in situ radiotherapy of deep-seated cancer, J. Am. Ceram. Soc., 2006, vol. 89, pp. 1347–1351.CrossRefGoogle Scholar
  7. 7.
    Kawashita, M., Miyaji, F., Kokubo, T., Takaoka, G.H., Yamada, I., Suzuki, Y., and Kajiyama, K., Preparation of radiotherapy glass by phosphorus ion implantation at 100 keV, J. Biomed. Mater. Res., 1997, vol. 38, no. 4, pp. 342–347.CrossRefGoogle Scholar
  8. 8.
    Kawashita, M., Matsui, N., Li, Z., and Miyazaki, T., Preparation of porous yttrium oxide microparticles by gelation of ammonium alginate in aqueous solution containing yttrium ions, J. Mater. Sci.: Mater. Med., 2010, vol. 21, no. 6, pp. 1837–1843.Google Scholar
  9. 9.
    Christie, J.K. and Tilocca, A., Short-range structure of yttrium alumino-silicate glass for cancer radiotherapy: CarParrinello molecular dynamics simulations, Adv. Eng. Mater., 2010, vol. 12, no. 7, pp. B326–B330.CrossRefGoogle Scholar
  10. 10.
    Simon, V., Eniu, D., Takács, A., Magyari, K., Neumann, M., and Simon, S., X-ray photoemission study of yttrium contained in radiotherapy systems, J. Optoelectron. Adv. Mater., 2005, vol. 7, no. 6, pp. 2853–2857.Google Scholar
  11. 11.
    Heness, G. and Nissan, B., Innovative bioceramics, Mater. Forum, 2004, vol. 27, pp. 104–114.Google Scholar
  12. 12.
    Sene, F.F., Martinelli, J.R., and Okuno, E., Synthesis and characterization of phosphate glass microspheres for radiotherapy applications, J. Non-Cryst. Solids, 2008, vol. 354, pp. 4887–4893.CrossRefGoogle Scholar
  13. 13.
    Kawashita, M., Shineha, R., Kim, H.M., Kokubo, T., Inoue, Y., Araki, N., Nagata, Y., Hiraoka, M., and Sawada, Y., Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer, Biomaterials, 2003, vol. 24, no. 17, pp. 2955–2963.CrossRefGoogle Scholar
  14. 14.
    Sreekumar, K.P., Saxena, S.K., Kumar, Y., Thiyagarajan, T.K., Dash, A., Ananthapadmanabhan, P.V., and Venkatesh, M., Studies on the preparation and plasma spherodization of yttrium aluminosilicate glass microspheres for their potential application in liver brachytherapy, J. Phys. Conf. Ser., 2010, vol. 208, no. 1, pp. 1–5.Google Scholar
  15. 15.
    Mantravadi, R.V.P., Spignos, D.G., Tan, W.S., and Felix, E.L., Intraarterial yttrium 90 in the treatment of hepatic malignancy, Radiology, 1982, vol. 142, no. 3, pp. 783–786.Google Scholar
  16. 16.
    Cho, S.M., Kim, Y.T., and Yoon, D.H., Optical characterization of silica based waveguide prepared by plasma enhanced chemical vapor deposition, J. Korean Phys. Soc., 2003, vol. 42, pp. 947–S951.Google Scholar
  17. 17.
    Handbook on the Physics and Chemistry of Rare Earths, Volume 8, Gschneidner, K.A., Jr. and Eyring, L.R., Eds., Amsterdam, The Netherlands, North-Holland, 1986.Google Scholar
  18. 18.
    Palanivel, R. and Velraj, G., FTIR and FT-Raman spectroscopic studies of fired clay artifacts recently excavated in Tamilnadu, India, Indian J. Pure Appl. Phys., 2007, vol. 45, no. 6, pp. 501–508.Google Scholar
  19. 19.
    Gradeff, P.S., Yunlu, K., Deming, T.J., Olofson, J.M., Doedens, R.J., and Evans, W.J., Synthesis of yttrium and lanthanide silyloxy complexes from anhydrous nitrate and oxo alkoxide precursors and the X-ray crystal structure of [Ce(OsiPh3),(THF)3](THF), Inorg. Chem., 1990, vol. 29, pp. 420–424.CrossRefGoogle Scholar
  20. 20.
    Chambers, J.J., Reactions for yttrium silicate high-k dielectrics, PhD Dissertation in Chemical Engineering, North Carolina State University, Raleigh, North Carolina, United States, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • Mohammad. R. Ghahramani
    • 1
  • Adil. A. Garibov
    • 1
  • Teymur. N. Agayev
    • 1
  • Mohammad. A. Mohammadi
    • 2
  1. 1.Institute of Radiation ProblemsAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Department of Atomic and Molecular Physics, Faculty of PhysicsUniversity of TabrizTabrizIran

Personalised recommendations