Advertisement

Glass Physics and Chemistry

, Volume 40, Issue 2, pp 151–156 | Cite as

Band gap measurement of ZnO-MoO3-P2O5 glasses by photoconductivity

  • M. A. Ghauri
  • S. A. Siddiqi
  • M. G. B. Ashiq
Article

Abstract

The preparation of a range of glasses based on the ternary system ZnO-MoO3-P2O5 network is reported. The time dependence resistance of these glasses at constant applied voltage reveals the absence of polarization effect. The glasses are characterized by photoconductivity measurements and optical band gaps are deduced from their respective spectral dependence curves under various applied voltages. The normalized photocurrent is found to increase with photon energy and applied voltage. The values of band gap and dark current as a function of applied voltage are deduced. It is demonstrated that normalized photocurrent arises from electron hopping transport mechanism.

Keywords

phosphate glasses electrical conductivity photoconductivity band gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pinet, O., Dussossoy, J.L., David, C., and Fillet, C., Glass matrices for immobilizing nuclear waste containing molybdenum and phosphorus, J. Nucl. Mater., 2008, vol. 377, no. 2, pp. 307–312.CrossRefGoogle Scholar
  2. 2.
    Subcik, J., Koudelka, L., Mosner, P., Montagne, L., Tricot, G., Delevoye, L., and Gregora, I., Glass-forming ability and structure of ZnO-MoO3-P2O5 glasses, J. Non-Cryst. Solids, 2010, vol. 356, nos. 44–49, pp. 2509–2516.CrossRefGoogle Scholar
  3. 3.
    Muthupari, S., Prabakar, S., and Rao, K.J., Chemical basis of the structural modification in sodium borovanadate glasses: Thermal and spectroscopic studies, J. Phys. Chem., 1994, vol. 98, no. 10, pp. 2646–2652.CrossRefGoogle Scholar
  4. 4.
    Hong, Y., Chen, D., Zhan, Z., Chen, X., Lv, P., Yan, F., Huang, F., and Liang, J., Subsolidus phase relations in the system ZnO-P2O5-MoO3, J. Alloy Compd., 2009, vol. 482, nos. 1–2, pp. 49–52.CrossRefGoogle Scholar
  5. 5.
    Muthupari, S. and Rao, K.J., Cluster model of glass transition: The variation of T g with cage vibrational frequency of Na+ ions in sodium borovanadate glasses, Chem. Phys. Lett., 1994, vol. 223, nos. 1–2, pp. 133–138.CrossRefGoogle Scholar
  6. 6.
    Reddy, C.N., Gowda, V.C.V., and Chakradhar, R.P.S., Elastic properties and structural studies on lead-borovanadate glasses, J. Non-Cryst. Solids, 2008, vol. 354, no. 1, pp. 32–40.CrossRefGoogle Scholar
  7. 7.
    Mackenzie, J.D., Modern Aspects of the Vitreous State, London: Butterworths, 1964, vol. 2.Google Scholar
  8. 8.
    Tischendorf, B.C., Alam, T.M., Cygan, R.T., and Otaigbe, J.U., The structure and properties of binary zinc phosphate glasses studied by molecular dynamics simulations, J. Non-Cryst. Solids, 2003, vol. 316, nos. 2–3, pp. 261–272.CrossRefGoogle Scholar
  9. 9.
    Prakash, P.G. and Rao, J.L., VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques, Spectrochim. Acta, Part A, 2005, vol. 61, nos. 11–12, pp. 2595–2602.CrossRefGoogle Scholar
  10. 10.
    Owen, A.E., Semiconducting, glasses: Part II. Properties and interpretation, Contemp. Phys., 1970, vol. 11, no. 3, pp. 257–286.CrossRefGoogle Scholar
  11. 11.
    Adler, D., Critical Review in Solid State Sciences, Cleveland, Ohio, United States: Chemical Rubber Company, 1971.Google Scholar
  12. 12.
    Sayer, M., Mansingh, A., Reyes, J.M., and Rosenblalt, G., Polaronic hopping conduction in vanadium phosphate glasses, J. Appl. Phys., 1971, vol. 42, no. 7, pp. 2857–2863.CrossRefGoogle Scholar
  13. 13.
    Davis, E.A. and Mott, N.F., Conduction in non-crystalline systems: V. Conductivity, optical absorption, and photoconductivity in amorphous semiconductors, Philos. Mag., 1970, vol. 22, no. 179, pp. 903–922.CrossRefGoogle Scholar
  14. 14.
    Abbas, L., Bih, L., Nadiri, A., El-Amaoui, Y., Mezzane, D., and Eloudai, B., Properties of mixed Li2O and Na2O molybdenum phosphate glasses, J. Mol. Struct., 2008, vol. 876, nos. 1–3, pp. 194–198.CrossRefGoogle Scholar
  15. 15.
    El-Desoky, M.M., Al-Hajry, A., Tokunaga, M., Nishida, T., and Hasaan, M.Y., Effect of sulfur addition on the redox state of iron in iron phosphate glasses, Hyperfine Interact., 2004, vols. 156–157, nos. 1–4, pp. 547–553.CrossRefGoogle Scholar
  16. 16.
    Hekmat-Shoar, M.H., Hogarth, C.A., and Moridi, G.R., A study of the electrical properties of molybdenum phosphate glasses, J. Mater. Sci., 1985, vol. 20, no. 3, pp. 889–894.CrossRefGoogle Scholar
  17. 17.
    Bih, L., Elomari, M., Reau, J.M., Hadded, M., Boudlich, D., Yocaubi, A.M., and Nadiri, A., Electronic and ionic conductivity of glasses inside the Li2O-MoO3-P2O5 system, Solid State Ionics, 2007, vol. 132, pp. 71–85.CrossRefGoogle Scholar
  18. 18.
    Ghauri, M.A., Siddiqi, S.A., Shah, W.A., Ashiq, M.G.B., and Iqbal, M., Optical properties of zinc molybdenum phosphate glasses, J. Non-Cryst. Solids, 2009, vol. 355, nos. 50–51, pp. 2466–2471.CrossRefGoogle Scholar
  19. 19.
    Siddiqi, S.A., Ghauri, M.A., and Mirza, M.J.S., The band gap estimation of zinc manganese phosphate glasses, Mod. Phys. Lett. B, 2008, vol. 22, no. 12, pp. 1265–1272.CrossRefGoogle Scholar
  20. 20.
    Hogarth, C.A. and Ghauri, M.A., The properties of cadmium phosphate and their electrical and optical properties, J. Mater. Sci., 1979, vol. 14, pp. 1641–1646.CrossRefGoogle Scholar
  21. 21.
    Hartman, T.E., Blair, J.C., and Bauer, R., Electrical conduction through SiO films, J. Appl. Phys., 1966, vol. 37, no. 6, pp. 2468–2473.CrossRefGoogle Scholar
  22. 22.
    Moridi, G.R. and Hogarth, C.A., Further studies of memory switching in copper-calcium-phosphate glass devices, Int. J. Electron., 1978, vol. 44, no. 3, pp. 297–304.CrossRefGoogle Scholar
  23. 23.
    Bahgat, A.A., Mady, H.A., Moghny, A.S.A., Abd-Rabo, A.S., and Negm, S.E., Transport properties of KxV2O5 · nH2O nanocrystalline films, J. Mater. Sci. Technol., 2011, vol. 27, no. 10, pp. 865–872.CrossRefGoogle Scholar
  24. 24.
    Redfield, D. and Afromowitz, M.A., The direct absorption edge in covalent solids, Appl. Phys. Lett., 1967, vol. 11, no. 4, pp. 138–140.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • M. A. Ghauri
    • 1
  • S. A. Siddiqi
    • 2
  • M. G. B. Ashiq
    • 3
  1. 1.Department of PhysicsMinhaj UniversityLahorePakistan
  2. 2.Interdisciplinary Research Centre in Biomedical MaterialsCOMSATS Institute of Information TechnologyLahorePakistan
  3. 3.Advanced Photonic Science Institute University Technologi MalaysiaSkudai JohorMalaysia

Personalised recommendations