Glass Physics and Chemistry

, Volume 40, Issue 1, pp 1–7 | Cite as

Functional materials based on manganese dioxide deposited on carbon fiber

  • L. A. Zemskova
  • A. V. Voyt
  • N. N. Barinov
  • T. A. Kaydalova
Article

Abstract

The composites manganese oxide/carbon fiber are obtained by chemical and electrochemical deposition. The process of electrodeposition was carried out in the presence of tetraalkylammonium cations of neutral SAA Triton X-100 in a potentiostatic regime by oxidating Mn2+ salts at +1.0 V (with respect to Ag/AgCl). Cathodic deposition was carried out in aqueous electrolytes NH4Cl and KCl and in the presence of polyelectrolyte of chitosan with oxidation of the formed precipitates by oxygen in air. The obtained composites are characterized by scanning electron microscopy, X-ray diffraction, and cyclic volt-amperometry techniques. The mechanism of film formation at the surface of the carbon fiber and the electrochemical properties of the composites are discussed.

Keywords

Chitosan Carbon Fiber Glass Physic Surface Active Agent Electrochemical Capacitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ching, S., Krukowska, K.S., and Suib, S.L., A new synthetic route to todorokite-type manganese oxides, Inorg. Chim. Acta, 1999, vol. 294, no. 2, pp. 123–132.CrossRefGoogle Scholar
  2. 2.
    Shanmugam, S. and Gedanken, A., MnO octahedral nanocrystals and MnO2C core-shell composites: Synthesis, characterization, and electrocatalytic properties, J. Phys. Chem. B, 2006, vol. 110, pp. 24486–24491.CrossRefGoogle Scholar
  3. 3.
    Kirillov, S.A., Lesnichaya, T.V., Visloguzova, N.M., Khainakov, S.A., Pendelyuk, O.I., Dzanashvili, D.I., Marsagishvili, T.A., Barsukov, V.Z., Khomenko, V.G., Tkachenko, A.V., and Chernukhin, S.I., On the optimal design of amorphous manganese oxide for application in power sources, in New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors, and Fuel Cells, Barsukov, I.V., Johnson, C.S., Doninger, J.E., and Barsukov, V.Z., Eds., Dordrecht, The Netherlands: Springer-Verlag, 2006, pp. 473–479.CrossRefGoogle Scholar
  4. 4.
    Brousse, T., Toupin, M., Dugas, R., Athouël, L., Crosnier, O., and Bélanger, D., Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc., 2006, vol. 153, no. 12, pp. A2171–A2180.CrossRefGoogle Scholar
  5. 5.
    Saenko, E.V., Oxides of manganese (III, IV) with various types of structures such as cation exchangers for selective sorption of lithium, Extended Abstract of Candidate’s Dissertation in Chemistry, Perm, 2007.Google Scholar
  6. 6.
    Dyer, A., Pillinger, M., Harjula, R., and Amin, S., Sorption characteristics of radionuclides on synthetic birnessite-type layered manganese oxides, J. Mater. Chem., 2000, vol. 10, pp. 1867–1874.CrossRefGoogle Scholar
  7. 7.
    Dyer, A., Pillinger, M., Newton, J., Harjula, R., Möller, T., and Amin, S., Sorption behavior of radionuclides on crystalline synthetic tunnel manganese oxides, Chem. Mater., 2000, vol. 12, pp. 3798–3804.CrossRefGoogle Scholar
  8. 8.
    Devaraj, S. and Munichandraiah, N., Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties, J. Phys. Chem. C, 2008, vol. 112, pp. 4406–4417.CrossRefGoogle Scholar
  9. 9.
    Jeong, Y.U. and Manthiram, A., Nanocrystalline manganese oxides for electrochemical capacitors with neutral electrolytes, J. Electrochem. Soc., 2002, vol. 149, no. 11, pp. A1419–A1422.CrossRefGoogle Scholar
  10. 10.
    Raymundo-Piñero, E., Khomenko, V., Frackowiak, E., and Béguin, F., Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors, J. Electrochem. Soc., 2005, vol. 152, no. 1, pp. A229–A235.CrossRefGoogle Scholar
  11. 11.
    Varentsova, V.I., Varentsov, V.K., and Bataev, I.A., Precipitation of manganese dioxide on the fibrous and nanocarbon materials, in Sovremennye metody v teoreticheskoi i eksperimental’noi elektrokhimii. Tezisy II Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Abstracts of Papers of the Second International Scientific and Technical Conference “Modern Methods in Theoretical and Experimental Electrochemistry,” Ples, Ivanovo oblast, Russia, June 21–25, 2010), Ivanovo: Informatika, 2010, p. 111.Google Scholar
  12. 12.
    Dong, X., Shen, W., Gu, J., Xiong, L., Zhu, Y., Li, H., and Shi, J., MnO2-embedded-in-mesoporous-carbonwall structure for use as electrochemical capacitors, J. Phys. Chem. B, 2006, vol. 110, pp. 6015–6019.CrossRefGoogle Scholar
  13. 13.
    Wei, W., Cui, X., Chen, W., and Ivey, D.G., Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: Implication for high capability electrochemical supercapacitors, J. Phys. Chem. C, 2008, vol. 112, pp. 15075–15083.CrossRefGoogle Scholar
  14. 14.
    Nakayama, M., Tanaka, A., Sato, Y., Tonosaki, T., and Ogura, K., Electrodeposition of manganese and molybdenum mixed oxide thin films and their charge storage properties, Langmuir, 2005, vol. 21, pp. 5907–5913.CrossRefGoogle Scholar
  15. 15.
    Nakayama, M., Kanaya, T., and Inoue, R., Anodic deposition of layered manganese oxide into a colloid crystal template for electrochemical supercapacitor, Electrochem. Commun., 2007, vol. 9, pp. 1154–1158.CrossRefGoogle Scholar
  16. 16.
    Nakayama, M., Konishi, S., Tagashira, H., and Ogura, K., Electrochemical synthesis of layered manganese oxides intercalated with tetraalkylammonium ions, Langmuir, 2005, vol. 21, pp. 354–359.CrossRefGoogle Scholar
  17. 17.
    Devaraj, S. and Munichandraiah, N., The effect of nonionic surfactant Triton X-100 during electrochemical deposition on MnO2 on its capacitance properties, J. Electrochem. Soc., 2007, vol. 154, no. 10, pp. A901–A909.CrossRefGoogle Scholar
  18. 18.
    Nagarajan, N., Cheong, M., and Zhitomirsky, I., Electrochemical capacitance of MnOx films, Mater. Chem. Phys., 2007, vol. 103, pp. 47–53.CrossRefGoogle Scholar
  19. 19.
    Zemskova, L.A., Glushchenko, V.Yu., and Avramenko, V.A., Method for preparation of the inorganic sorbent based on manganese (III, IV) oxides, RF Patent 2218209, Byull. Izobret., no. 34, October 12, 2003.Google Scholar
  20. 20.
    Therese, G.H.A. and Kamath, P.V., Electrochemical synthesis of metal oxides and hydroxides, Chem. Mater., 2000, vol. 12, no. 5, pp. 1195–1204.CrossRefGoogle Scholar
  21. 21.
    Zemskova, L.A., Sheveleva, I.V., Barinov, N.N., Kaidalova, T.A., Voit, A.V., and Zheleznov, S.V., Manganese oxide carbon fibrous materials, Russ. J. Appl. Chem., 2008, vol. 81, no. 7, pp. 1187–1192.CrossRefGoogle Scholar
  22. 22.
    Ma, S.B., Ahn, K.Y., Lee, E.S., Oh, K.H., and Kim, K.B., Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes, Carbon, 2007, vol. 45, no. 2, pp. 375–382.CrossRefGoogle Scholar
  23. 23.
    Frackowiak, E. and Béguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, vol. 39, no. 6, pp. 937–950.CrossRefGoogle Scholar
  24. 24.
    Ragupathy, P., Park, D.H., Campet, G., Vasan, H.N., Hwang, S.-J., Choy, J.-H., and Munichandraiah, N., Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor, J. Phys. Chem. C, 2009, vol. 113, pp. 6303–6309.CrossRefGoogle Scholar
  25. 25.
    Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, New York: Wiley, 1988.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • L. A. Zemskova
    • 1
  • A. V. Voyt
    • 1
  • N. N. Barinov
    • 2
  • T. A. Kaydalova
    • 1
  1. 1.Institute of Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Far Eastern Geological InstituteRussian Academy of SciencesVladivostokRussia

Personalised recommendations