Glass Physics and Chemistry

, Volume 40, Issue 1, pp 124–128 | Cite as

Crystal structure, thermal expansion, and electrical properties of layered oxides LnBa(Fe, Co, Cu)2O5 + δ (Ln = Nd, Sm, Gd)

Article

Abstract

LnBaFe0.5Co0.5CuO5 + δ and LnBaFeCo0.5Cu0.5O5 + δ solid solutions (Ln = Nd, Sm, Gd) are synthesized by the solid-phase method; their structural parameters and oxygen nonstoichiometry are determined; and the thermal expansion, conductivity, and thermal emf of these crystals are investigated. The thermal expansion coefficient of sintered ceramics and its electric transport parameters are calculated. The influence of the nature of rare-earth elements (REE) and 3d metal on the crystal structure, oxygen nonstoichiometry, and physicochemical properties of layered oxides LnBa(Fe, Co, Cu)2O5 + δ are analyzed.

Keywords

perovskites layered oxides thermal expansion electrical conductivity thermal emf 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhou, Q., He, T., He, Q., and Ji, Y., Electrochemical performances of LaBaCuFeO5 + x and LaBaCuCoO5 + x as potential cathode materials for intermediate-temperature solid oxide fuel cells, Electrochem. Commun., 2009, vol. 11, pp. 80–83.CrossRefGoogle Scholar
  2. 2.
    Zhu, Z., Tao, Z., Bi, L., and Liu, W., Investigation of SmBaCuCoO5 + δ double-perovskite as cathode for proton-conducting solid oxide fuel cells, Mater. Res. Bull., 2010, vol. 45, pp. 1771–1774.CrossRefGoogle Scholar
  3. 3.
    Zhuravleva, T.A., Electrophysical properties of layered perovskites LnBaCo2 − xCuxO5 + δ (Ln = Sm, Nd) for solid oxide fuel cells, Russ. J. Electrochem., 2011, vol. 47, no. 6, pp. 676–680.CrossRefGoogle Scholar
  4. 4.
    Klyndziuk, A., Petrov, G., Kurhan, S., Chizhova, Ye., Chabatar, A., Kunitski, L., and Bashkirov, L., Sensor properties of some perovskite-like metal oxides, Chem. Sens., 2004, vol. 20, suppl. B, pp. 854–855.Google Scholar
  5. 5.
    Klyndyuk, A.I., Chizhova, E.A., and Taratyn, I.A., Sensory properties of ferrocuprates YBa(Fe, M)CuO5 (M = Mn, Co, Ni), Tr. Belarus. Gos. Tekh. Univ., Ser. III: Khim. Tekhnol. Neorg. Veshchestv, 2005, issue XIII, pp. 54–58.Google Scholar
  6. 6.
    Klyndyuk, A.I., Chizhova, Ye.A., Sazanovich, N.V., and Krasutskaya, N.S., Thermoelectric properties of some perovskite oxides, J. Thermoelectr., 2009, no. 3, pp. 72–80.Google Scholar
  7. 7.
    Rivas-Murias, B., Rivas, J., and Senaris-Rodriguez, M.A., Synthesis, characterization, and transport properties of Pr0.50Ln0.50BaCo2O5 + δ (Ln = Pr, Nd, Sm, Eu, Gd, Tb, and Dy), J. Alloys Compd., 2012, vol. 516, pp. 113–118.CrossRefGoogle Scholar
  8. 8.
    Klyndyuk A.I., Effect of oxygen nonstoichiometry on the thermal and electrophysical properties of layered ferrocuprates LnBaCuFeO5 + δ (Ln = La, Pr; 0 ≤ δ ≤ 0.5), Phys. Solid State, 2009, vol. 50, no. 4, pp. 609–614.CrossRefGoogle Scholar
  9. 9.
    Klyndyuk, A., Layered perovskite-like oxides 0112 type: Structure, properties and possible applications, in Advances in Chemistry Research, Taylor, J.C., Ed., New York: Nova Science, 2010, vol. 5, pp. 59–105.Google Scholar
  10. 10.
    Shannon, R.D. and Prewitt, C.T., Revised values of effective ionic radii, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25B, part 5, pp. 946–960.Google Scholar
  11. 11.
    Klyndyuk, A.I. and Chizhova, E.A., Properties of RBaCuFeO5 + δ (R = Y, La, Pr, Nd, Sm-Lu), Inorg. Mater., 2006, vol. 42, no. 5, pp. 550–561.CrossRefGoogle Scholar
  12. 12.
    Mott, N. and Davis, E., Electronic Processes in Non-Crystalline Materials, Oxford: Oxford University Press, 1979.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Belarusian State Technological UniversityMinskBelarus

Personalised recommendations