Advertisement

Glass Physics and Chemistry

, Volume 39, Issue 5, pp 570–578 | Cite as

Ceramic nanocomposites based on oxides of transition metals for ionistors

  • O. A. Shilova
  • V. N. Antipov
  • P. A. Tikhonov
  • I. Yu. Kruchinina
  • M. Yu. Arsent’ev
  • T. I. Panova
  • L. V. Morozova
  • V. V. Moskovskaya
  • M. V. Kalinina
  • I. N. Tsvetkova
Article

Abstract

Low-temperature synthesis methods are used to produce nanoceramic materials for electrodes of the following ionistors: (ZrO2)0.6(In2O3)0.4, praseodymium cobaltite, as well as neodymium, lanthanum, and nickel chromites; they operate in the presence of an ion-conducting phosphorosilicate separator membrane and phosphate impregnation. Film electrodes of ionistors are fabricated that consist of nanocrystalline oxide materials deposited as a thin film on a porous electroconductive metal substrate, i.e., foamed nickel. The MnO2-foamed nickel electrode has a specific capacity of 45.0 F g−1, which is compared with that of industrial supercapacitors.

Keywords

ceramics membrane electric conductivity electrodes electrolyte foamed nickel supercapacitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shao, G., Yao, Y., Zhang, S., and He, P., Supercapacitor characteristic of La-doped Ni(OH)2 prepared by electrodeposition, Rare Met. (Beijing, China), 2009, vol. 28, no. 2, pp. 132–136.CrossRefGoogle Scholar
  2. 2.
    Zhou, F., Cococcioni, M., Marianetti, C.A., Morgan, D., and Ceder, G., First-principles prediction of redox potentials in transition-metal compounds with LDA + U, Phys. Rev. B: Condens. Matter, 2004, vol. 70, no. 23, p. 235121.CrossRefGoogle Scholar
  3. 3.
    Morimoto, T., Hiratsuka, K., Sanada, Y., and Kurihara, K., Electric double-layer capacitor using organic electrolyte, J. Power Sources, 1996, vol. 60, no. 2, pp. 239–247.CrossRefGoogle Scholar
  4. 4.
    Shurygina, V.I., Supercapacitors: Assistants or potential competitors for battery power sources, Elektron.: Nauka, Tekhnol., Biznes, 2003, issue 3, pp. 20–24.Google Scholar
  5. 5.
    Shurygina, V.I., Supercapacitors: The smaller are the dimensions, the higher is the power, Elektron.: Nauka, Tekhnol., Biznes, 2009, issue 7, pp. 10–20.Google Scholar
  6. 6.
    Lee, B.J., Sivakkumar, S.R., Ko, J.M., Kim, J.H., Jo, S.M., and Kim, D.Y., Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors, J. Power Sources, 2007, vol. 168, no. 2, pp. 546–552.CrossRefGoogle Scholar
  7. 7.
    Zheng, J.P., Cygan, P.J., and Jow, T.R., Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc., 1995, vol. 142, no. 8, pp. 2699–2703.CrossRefGoogle Scholar
  8. 8.
    McKeown, D.A., Hagans, P.L., Carette, L.P.L., Russell, A.E., Swider, K.E., and Rolison, D.R., Structure of hydrous ruthenium oxides: Implications for charge storage, J. Phys. Chem. B, 1999, vol. 103, no. 23, pp. 4825–4832.CrossRefGoogle Scholar
  9. 9.
    Naoi, K. and Simon, P., New materials and new configurations for advanced electrochemical capacitors, Electrochem. Soc. Interface, 2008, vol. 17, no. 1, p. 34.Google Scholar
  10. 10.
    Timofeev, C.V, Bobrova, L.P., Terukov, E.I., Fateev, V.N., and Pugachev, A.K., Composite ionexchange membranes based on porous polytetrafluoroethylene films and their use, Altern. Energ. Ekol., 2007, no. 2 (46), pp. 128–131.Google Scholar
  11. 11.
    Panshin, Yu.A., Dreiman, N.A., Andreeva, A.I., and Manechkina, O.N., Properties of perfluorinated sulphocationite membranes MF-4SK, Plast. Massy, 1977, no. 8, pp. 7–8.Google Scholar
  12. 12.
    Shevchenko, V.Ya., Investigations in the field of the nanoworld and nanotechnologies, Ross. Nanotekhnol., 2008, vol. 3, nos. 11–12, pp. 36–45.Google Scholar
  13. 13.
    Shevchenko, V.Ya., The concept of the development of nanotechnologies in the North-West Federal District, Nauchno-Proizvod. Zh.: Nanotekhnol., Ekol., Proizvod., 2010, no. 3, pp. 106–110.Google Scholar
  14. 14.
    Shevchenko, V.Ya., Investigation, development, and innovation in the field of ceramic and glass materials, in Sbornik: Steklo i keramika: XXI. Perspektivy razvitiya (A Collection of Works on Glass and Ceramics: XXI. Prospects for Development), St. Petersburg: Yanus, 2001, pp. 179–191.Google Scholar
  15. 15.
    Tsvetkova, I.N., Shilova, O.A., Voronkov, M.G., Gomza, Yu.P., and Sukhoy, K.M., Sol-gel synthesis and investigation of proton-conducting hybrid organicinorganic silicophosphate materials, Glass Phys. Chem., 2008, vol. 34, no. 1, pp. 68–76.CrossRefGoogle Scholar
  16. 16.
    Shilova. O. A. Ways of controlling the structure and properties of sol-gel-derived hybrid micro- and nanocomposite materials, Adv. Sci. Technol. 2006, vol. 45, pp. 793–798.CrossRefGoogle Scholar
  17. 17.
    Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and investigation of the structure of ceramic nanopowders in the ZrO2-CeO2-Al2O3 system, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 470–477.CrossRefGoogle Scholar
  18. 18.
    Tikhonov, P.A., Arsent’ev, M.Yu., Kalinina, M.V., Popov, V.P., Andreeva, N.S., Podzorova, L.I., and Il’icheva, A.A., Preparation and properties of ceramic composites with oxygen ionic conductivity in the ZrO2-CeO2-Al2O3 and ZrO2-Sc2O3-Al2O3 systems, Glass Phys. Chem., 2008, vol. 34, no. 3, pp. 319–323.CrossRefGoogle Scholar
  19. 19.
    Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physico-chemical properties of the electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.Google Scholar
  20. 20.
    Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., and Andreeva, N.S., Investigation of some physicochemical properties of ceramics, single crystals, and nanofilms based on zirconia, hafnia, and rare-earth oxides, Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 478–483.CrossRefGoogle Scholar
  21. 21.
    Zyryanov, V.V., Uvarov, N.F., and Sadykov, V.A., Mechanochemical synthesis of solid solutions based on ZrO2 and their electrical conductivity, Glass Phys. Chem., 2007, vol. 33, no. 4, pp. 394–401.CrossRefGoogle Scholar
  22. 22.
    Duran, P., Villegas, M., and Capel, F., Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powders, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.CrossRefGoogle Scholar
  23. 23.
    Kofstad, P., Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972. Translated under the title Otklonenie ot stekhiometrii, diffuziya i elektroprovodnost’ v prostykh okislakh metallov, Moscow: Mir, 1975.Google Scholar
  24. 24.
    Len’shin, A.S., Kashkarov, V.M., Seredin, P.V., Minakov, D.A., Agapov, B.L., Kuznetsova, M.A., Moshnikov, V.A., and Domashevskaya, E.P., Investigation of the morphological growth features and optical characteristics of multilayer porous silicon samples grown on n-type substrates with an epitaxially deposited p+-layer, Semiconductors, 2012, vol. 46, no. 8, pp. 1079–1084.CrossRefGoogle Scholar
  25. 25.
    Kalinina, M.V., Tikhonov, P.A., Drozdova, I.A., Moshnikov, V.A., and Tomaev, V.V., Electron microscopic investigation of the structure of gas-sensitive nanocomposites prepared by the hydropyrolytic method, Glass Phys. Chem., 2003, vol. 29, no. 3, pp. 322–327.CrossRefGoogle Scholar
  26. 26.
    Chang, J.K., Lee, M.T., Cheng, C.W., Tsai, W.T. Deng, M.J., and Sun, I.W., Evaluation of ionic liquid electrolytes for use in manganese oxide supercapacitors, Electrochem. Solid-State Lett., 2009, vol. 12,issue 1, pp. A19–A22.CrossRefGoogle Scholar
  27. 27.
    Cottineau, T., Toupin, M., Delahaye, T., Brousse, T., and Bélanger, D., Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors, Appl. Phys. A: Mater. Sci. Process., 2006, vol. 82, no. 4, pp. 599–606.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. A. Shilova
    • 1
  • V. N. Antipov
    • 1
  • P. A. Tikhonov
    • 1
  • I. Yu. Kruchinina
    • 1
  • M. Yu. Arsent’ev
    • 1
  • T. I. Panova
    • 1
  • L. V. Morozova
    • 1
  • V. V. Moskovskaya
    • 1
  • M. V. Kalinina
    • 1
  • I. N. Tsvetkova
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations