Glass Physics and Chemistry

, Volume 39, Issue 4, pp 462–466 | Cite as

Calculation of the properties of raw briquet for producing foam glass in the temperature range of preheating

  • A. M. Demin
Short Communications


The suggested method allows for the calculation of a temperature dependence of the density, thermal conductivity, and specific thermal capacity of a raw briquet (from glass powder) during preheating in the course of foam glass production. The properties of the raw briquet were determined based on the structure and chemical composition of the raw material (glass). The resulting dependences can be used to solve the problems of heat-mass exchange.


foam glass raw briquet calculation of effective properties density specific heat capacity thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Demidovich, B.K., Penosteklo (Foamglass), Minsk: Nauka i Tekhnika, 1975.Google Scholar
  2. 2.
    Baranov, E.V., Technology for the production of heat-insulating materials based on the use of the effect of swelling and on the porization of the watered technogenic glass, Candidate’s Dissertation in Chemistry, Voronezh, 2006.Google Scholar
  3. 3.
    Baranov, E.V., Shelkovnikova, T.I., and Chernyshov, E.M., New technological principle of the porization and swelling of the glass during the preparation of lightweight fillers, in Vestnik tsentral’nogo regional’nogo otdeleniya Rossiiskoi akademii arkhitektury i stroitel’nykh nauk (Bulletin of the Central Regional Branch of the Russian Academy of Architecture and Building Sciences), Voronezh, 2009, pp. 95–102.Google Scholar
  4. 4.
    Kheifets, L.I. and Neimark, A.V., Mnogofaznye protsessy v poristykh sredakh (Multiphase Processes in Porous Media), Moscow: Khimiya, 1982.Google Scholar
  5. 5.
    Appen, A.A., Khimiya stekla (The Chemistry of Glass), Leningrad: Khimiya, 1974.Google Scholar
  6. 6.
    Fiziko-khimicheskie osnovy proizvodstva opticheskogo stekla (Physicochemical Foundations of the Production of Optical Glasses), Demkina, L.I., Ed., Leningrad: Khimiya, 1976.Google Scholar
  7. 7.
    Schmelzer, J.W.P., Gutzow, I.S., Mazurin, O.V., Todorova, S.V., Petroff, B.B., and Priven, A.I., Glasses and the Glass Transition, Weinheim, Germany: Wiley-VCH, 2011.CrossRefGoogle Scholar
  8. 8.
    Properties of Glass-Forming Melts, David Pye, L., Montenaro, A., and Joseph, I., Eds., Boca Raton, Florida, United States: CRC Press, 2005.Google Scholar
  9. 9.
    Fluegel, A., Glass viscosity calculation based on a global statistical modeling approach, Glass Technol.—Eur. J. Glass Sci. Technol., Part A, 2007, vol. 48, no. 1, pp. 13–30.Google Scholar
  10. 10.
    Demkina, L.I., A scheme for calculating the refractive index, main dispersion, and density of optical silicate glasses, Fiz. Khim. Stekla, 1994, vol. 20, no. 5, pp. 639–653.Google Scholar
  11. 11.
    Fluegel, A., Global model for calculating room-temperature glass density from the composition, J. Am. Ceram. Soc., 2008, vol. 90, no. 8, pp. 2622–2625.CrossRefGoogle Scholar
  12. 12.
    Mazurin, O.V., Strel’tsina, M.V., and Shvaiko-Shvaikovskaya, T.P., Svoistva stekol i stekloobrazuyushchikh rasplavov. Spravochnik: Tom III, chast’ 1. Trekhkomponentnye silikatnye sistemy (A Reference Book on Properties of Glasses and Glass-Forming Melts: Volume III, Part 1. Three-Component Silicate Systems), Leningrad: Nauka, 1977.Google Scholar
  13. 13.
    Spravochnik po proizvodstvu stekla (A Reference Book on the Production of Glasses), Kitaigorodskii, I.I. and Sil’vestrovich, S.I., Eds., Moscow: Gosstroiizdat, 1963, vol. 1.Google Scholar
  14. 14.
    Gudovich, O.D. and Primenko, V.I., Calculation of the heat capacity of silicate glasses and melts, Fiz. Khim. Stekla, 1985, vol. 11, no. 3, pp. 349–355.Google Scholar
  15. 15.
    Primenko, V.I. and Galyant, V.I., Calculation of the true heat capacity of silicate glasses, Steklo Keram., 1988, no. 4, pp. 9–10.Google Scholar
  16. 16.
    Stebbins, J.F., Carmichael, I.S.E., and Moret, L.K., Heat capacities and entropies of silicate liquids and glasses, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 131–148.CrossRefGoogle Scholar
  17. 17.
    Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Fundamentals of Heat Transfer), Moscow: Energiya, 1977.Google Scholar
  18. 18.
    Lykov, A.V., Yavleniya perenosa v kapillyarno-poristykh telakh (Transport Phenomena in Capillary-Porous Bodies), Moscow: State Publishing House of Technical and Theoretical Literature, 1954.Google Scholar
  19. 19.
    Cellular and Porous Materials, Öchsner, A., Murch, G.E., and de Lemos, M.J.S., Eds., Weinheim, Germany: Wiley-VCH, 2008.Google Scholar
  20. 20.
    Cellular Ceramics: Structure, Manufacturing, Properties, and Applications, Scheffler, M. and Colombo, P., Weinheim, Germany: Wiley-VCH, 2005.Google Scholar
  21. 21.
    GOST R (State Standard) 52022-2003: Glass containers for food, perfume, and cosmetic products. Types of glasses, Moscow: Gosstandart of Russia, 2006.Google Scholar
  22. 22.
    Demin, A.M., Mathematical modeling of preheating the foam glass green body in the course of cellular glass production, Vestn. Grazhdanskikh Inzh., 2013, no. 1, pp. 166–172.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.St. Petersburg State University of Architecture and Civil EngineeringSt. PetersburgRussia

Personalised recommendations