Physicochemical properties of nanocrystalline composites based on ZrO2, Al2O3, and rare-earth oxides

  • M. Yu. Arsent’ev
  • P. A. Tikhonov
  • M. V. Kalinina


Powder precursors have been prepared by means of the sol-gel technique and codeposition, and nanoceramics in the ZrO2-Al2O3-rare-earth (RE) oxide system (RE = Ce, Sc, or Y) based on them have been obtained. Physicochemical properties of the resulting ceramic composites have been investigated. The energy model for oxygen-ionic transport processes in a solid solution based on ZrO2, which relies on computer simulation procedure, has been proposed, and the structural, strength, and electrophysical characteristics of the solid solution have been calculated. The obtained materials are promising as high-melting electrochemical sensors in molten oxides.


solid solutions ceramics electrical conductivity microstructure electrochemical sensors computer simulation 


  1. 1.
    Shevchenko, V.Ya., Research in the Field of Nanoworld and Nanotechnologies, Ross. Nanotekhnol., 2008, vol. 3,nos. 11–12, pp. 36–45.Google Scholar
  2. 2.
    Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Engineering Ceramics), Moscow: Nauka, 1993 [in Russian].Google Scholar
  3. 3.
    Shevchenko, V.Ya., Rresearchs, Development, and Innovation in the Field of Ceramic and Vitreous Materials, in Steklo i keramika-XXI. Perspektivy razvitiya (Glass and Ceramics-XXI: Prospects for the Development), St. Petersburg: Yanus, 2001, pp. 179–191 [in Russian].Google Scholar
  4. 4.
    Shabanova, N.A., Khimiya i tekhnologiya nanodispersnykh sistem (Chemistry and Tecnology of Nanodispersed Systems), Moscow: Akademkniga, 2006 [in Russian].Google Scholar
  5. 5.
    Izu, N., Shin, W., Murayama, N., and Kanzaki, S., Resistive Oxygen Gas Sensors Based on CeO2 Fine Powder Prepared Using Mist Pyrolysis, Sens. Actuators, B, 2002. vol. 87, no 1, pp. 95–98.CrossRefGoogle Scholar
  6. 6.
    Tikhonov, P.A., Kalinina, M.V., and Polyakov, V.O., ZrO2- and HfO2-Based Electrochemical Sensors Intended for Investigation of Glass-Forming Oxide Melts, Fiz. Khim. Stekla, 2007, vol. 33, no. 6, pp. 908–914 [Glass Phys. Chem. (Engl. transl.), 2007, vol. 33, no. 6, pp. 667–671].Google Scholar
  7. 7.
    Tikhonov, P.A., Arsent’ev, M.Yu., Kalinina, M.V., Podzorova, L.K., Il’icheva, A.A., Popov, V.P., and Andreeva, N.S., Preparation and Properties of Ceramic Composites with Oxygen Ionic Conductivity in the ZrO2-CeO2-Al2O3 and ZrO2-Sc2O3-Al2O3 Systems, Fiz. Khim. Stekla, 2008, vol. 34,no. 3, pp. 417–422 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 3, pp. 319–323].Google Scholar
  8. 8.
    Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and Investigation of the Structure of Ceramic Nanopowders in the ZrO2-CeO2-Al2O3 System, Fiz. Khim. Stekla, 2010, vol. 36, no. 4, pp. 585–595 [Glass Phys. Chem. (Engl. transl.), 2010, vol. 36, no. 4, pp. 470–477].Google Scholar
  9. 9.
    Arsentuyev, M.Yu., Morozova, L.V., Panova, T.I., and Tikhonov, P.A., Synthesis and Investigation of Nanostructured Ceramics in the ZrO2-Y2O3-Al2O3 System: Modeling of Oxygen Ion Transport Processes, Abstracts of Papers of the Topical Meeting of the European Ceramic Society “Information and Structure in the Nanoworld 2009,” St. Petersburg, Russia, July 1–3, 2009, St. Petersburg, 2009, p. 35.Google Scholar
  10. 10.
    Tikhonov, Ya.A., Kuznetsov, A.K., and Kravchinskaya, M.V., An Instrument for Measurement of Electronic and Ionic Conductivity of Oxide Materials, Zavod. Lab., 1978, no. 7, pp. 837–838.Google Scholar
  11. 11.
    Kuznetsov, A.K., Instruments for High-Temperature Dilatometry, in Trudy I Vsesoyuznogo simpoziuma “Metody izmereniya teplovogo rasshireniya stekol i spaivaemykh s nimi metallov” (Proceedings of the First All-Union Symposium “Methods for Measurement of Thermal Expansion of Glasses and Metals Sealed with Glasses”), Leningrad: Nauka, 1967, pp. 160–166.Google Scholar
  12. 12.
    Gosudarstvennyi standart Soyuza SSR (State Standard System of the Soviet Union), Moscow: Izd. Standartov, 1981 [in Russian].Google Scholar
  13. 13.
    Il’icheva, A.A., Olenin, A.Yu., Podzorova, L.K., Shevchenko, V.Ya., Lazarev, V.B., and Izotov, A.D., Surfactant Effects on the Aggregation and Structure of Stabilized Zirconia Prepared by Sol-Gel Processing, Neorg. Mater., 1996, vol. 32,no. 7, pp. 833–837 [Inorg. Mater. (Engl. transl.), 1996, vol. 32, no. 7, pp. 736–740].Google Scholar
  14. 14.
    Konakov, V.G. and Shul’ts, M.M., A Study of the Relative Basicity (the Oxygen Ion Exponent pO) of Melts in the M2O-SiO2 Systems (M = Li, Na, or K), Fiz. Khim. Stekla, 1996, vol. 22,no. 6 pp. 715–724 [Glass Phys. Chem. (Engl. transl.), 1996, vol. 22, no. 6, pp. 515–520].Google Scholar
  15. 15.
    Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (The Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978 [in Russian].Google Scholar
  16. 16.
    Zavodinsky, V.G., The Mechanism of Ionic Conductivity in Stabilized Cubic Zirconia, Fiz. Tverd. Tela (St. Petersburg), 2004, vol. 46,no. 3, pp. 441–445 [Phys. Solid State (Engl. transl.), 2004, vol. 46, no. 3, pp. 453–457].Google Scholar
  17. 17.
    Trovarelli, A., Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002.CrossRefGoogle Scholar
  18. 18.
  19. 19.
    Hohenberg, P. and Kohn, W., Inhomogeneous Electron Gas, Phys. Rev. B: Solid State, 1964, vol. 136,no. 3, pp. B864–B871.Google Scholar
  20. 20.
    Yashima, M., Hirose T., Katano, S., Suzuki, Y., Kakihana, M., and Yoshimura, M., Structural Changes of ZrO2-CeO2 Solid Solutions Around the Monoclinic-Tetragonal Phase Boundary, Phys. Rev. B: Condens. Matter, 1995, vol. 51, pp. 8018–8025.CrossRefGoogle Scholar
  21. 21.
    Reidy, R.K. and Simkovich, G., Electrical Conductivity and Point Defect Behavior of Ceria-Stabilized Zirconia, Solid State Ionics, 1993, vol. 62,nos. 1–2, pp. 85–97.CrossRefGoogle Scholar
  22. 22.
    Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., and Andreeva, N.S., Investigation of Some Physicochemical Properties of Ceramics, Single Crystals, and Nanofilms Based on Zirconia, Hafnia, and Rare-Earth Oxides, Fiz. Khim. Stekla, 2010, vol. 36,no. 4, pp. 596–603 [Glass Phys. Chem. (Engl. transl.), 2010, vol. 36, no. 4, pp. 478–483].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. Yu. Arsent’ev
    • 1
  • P. A. Tikhonov
    • 1
  • M. V. Kalinina
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations