Skip to main content
Log in

Self-organization processes in the organic-inorganic disperse system containing silver nanoparticles

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The morphology of complexly organized structures formed in polymer matrix under the action of silver nanoparticles has been investigated using atomic-force microscopy. The analysis of the set of experimental data and the results of the theoretical calculations of the pair interaction potentials has made it possible to propose the mechanism of formation of the “flower” structure, which is based on the interactions in the far potential minimum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000 [in Russian].

    Google Scholar 

  2. Egorova, E.M., Revina, A.A., Rostovshchikova, T.N., and Kiseleva, O.I., Bactericidal and Catalytic Properties of Stable Metal Nanoparticles in Reverse Micelles, Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, no. 5, pp. 332–338.

    CAS  Google Scholar 

  3. Chen, S. and Carroll, D.L., Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano Lett., 2002, vol. 34, no. 9, pp. 1003–1007.

    Article  ADS  Google Scholar 

  4. Karpov, S.V. and Slabko, V.V., Opticheskie i fotofizicheskie svoistva fraktal’no-strukturirovannykh zolei metallov (Optical and Photophysical Properties of Fractal-Structured Metal Sols), Novosibirsk: Siberian Branch of the Russian Academy of Sciences, 2003.

    Google Scholar 

  5. Chiganova, G.A., Preparation of Disperse Systems with Fractal Aggregates of Silver Nanoparticles, Zh. Sib. Fed. Univ. Tekh. Tekhnol., 2008, vol. 2, no. 1, pp. 155–161.

    Google Scholar 

  6. Sergeev, G.B., Nanochemistry of Metals, Usp. Khim., 2001, vol. 70, no. 10, pp. 915–953.

    Google Scholar 

  7. Roldughin, V.I., Quantum-Size Colloid Metal Systems, Usp. Khim., 2000, vol. 69, no. 10, pp. 899–923.

    Google Scholar 

  8. Bukhtiyarov, V.I. and Slin’ko, M.G., Metallic Nanosystems in Catalysis, Usp. Khim., 2001, vol. 70, no. 2, pp. 167–181.

    Google Scholar 

  9. Ershov, B.G., Metal Nanoparticles in Aqueous Solutions: Electronic, Optical, and Catalytic Properties, Ross. Khim. Zh., 2001, vol. 45, no. 3, pp. 20–30.

    CAS  Google Scholar 

  10. Karpov, S.V., Bas’ko, A.L., Popov, A.K., and Slabko, V.V., Optical Spectra of Silver Colloids Within the Framework of Fractal Physics, Kolloidn. Zh., 2000, vol. 62, no. 6, pp. 773–790 [Colloid J. (Engl. transl.), 2000, vol. 62, no. 6, pp. 699–713].

    Google Scholar 

  11. Karpov, S.V., Bas’ko, A.L., Popov, A.K., and Slabko, V.V., Specific Features of Absorption Spectra of Fractal-Structured Silver Sols, Opt. Spektrosk., 2003, vol. 95, no. 2, pp. 264–270 [Opt. Spectrosc. (Engl. transl.), 2003, vol. 95, no. 2, pp. 241–247].

    Google Scholar 

  12. Saifullina, I.R., Chiganova, G.A., Karpov, S.V., and Slabko, V.V., Preparation of Composite Films with Silver Nanoparticles and Their Fractal Aggregates in a Polymeric Matrix, Zh. Prikl. Khim. (St. Petersburg), 2006, vol. 79, no. 10, pp. 1660–1663 [Russ. J. Appl. Chem. (Engl. transl.), 2006, vol. 79, no. 10, pp. 1639–1642].

    Google Scholar 

  13. Head, S.M., The Characterization of Ag Ions by Electron Microscopy, Optical Adsorption, and Electrophoresis, J. Colloid Interface Sci., 1983, vol. 93, no. 2, pp. 545–555.

    Article  Google Scholar 

  14. Fridrikhsberg, D.A., Kurs Kolloidnoi Khimii (Course of Colloid Chemistry), Leningrad: Khimiya, 1974 [in Russian].

    Google Scholar 

  15. Kroyt, H.R., Colloid Science, Amsterdam: Elsevier, 1952, vol. 1. Translated under the title Nauka o kolloidakh, Moscow: Inostrannaya Literatura, 1955, vol. 1.

    Google Scholar 

  16. Enustun, B.V., Coagulation of Colloid Gold, J. Am. Chem. Soc., 1963, vol. 85, no. 21, pp. 3317–3330.

    Article  CAS  Google Scholar 

  17. Smirnov, B.M., Fractal Clusters, Usp. Fiz. Nauk, 1986, vol. 149, no. 2, pp. 177–219 [Sov. Phys.—Usp. (Engl. transl.), 1986, vol. 29, no. 6, 481–505].

    CAS  Google Scholar 

  18. Karpov, S.V., Bas’ko, A.L., Koshelev, S.V., Popov, A.K., and Slabko, V.V., Dependence of the Rate of Photoinitiated Formation of Fractal Aggregates in Silver Hydrosols on the Wavelength of Irradiating Light, Kolloidn. Zh., 1997, vol. 59, no. 6, pp. 765–773 [Colloid J. (Engl. transl.), 1997, vol. 59, no. 6, pp. 708–716].

    Google Scholar 

  19. Karpov, S.V., Isaev, I.L., Gavrilyuk, A.P., and Gerasimov, V.S., General Principles of the Crystallization of Nanostructured Disperse Systems, Kolloidn. Zh., 2009, vol. 71, no. 3, pp. 314–329 [Colloid J. (Engl. transl.), 2009, vol. 71, no. 3, pp. 313–328].

    Google Scholar 

  20. Karpov, S.V., Slabko, V.V., and Chiganova, G.A., Physical Principles of the Photostimulated Aggregation of Metal Sols, Kolloidn. Zh., 2002, vol. 64, no. 4, pp. 474–492 [Colloid J. (Engl. transl.), 2002, vol. 64, no. 4, pp. 425–441].

    Google Scholar 

  21. Karpov, S.V., Popov, A.K., and Slabko, V.V., Photochromic Reactions in Silver Nanocomposites with a Fractal Structure and Their Comparative Characteristics, Zh. Tekh. Fiz., 2003, vol. 73, no. 6, pp. 90–98 [Tech. Phys. (Engl. transl.), 2003, vol. 48, no. 6, pp. 749–756].

    Google Scholar 

  22. Karpov, S.V., Isaev, I.L., Gavrilyuk, A.P., Gerasimov, V.S., and Grachev, A.S., Effect of Electron Tunneling on the Crystallization of Nanostructured Metal Sols, Kolloidn. Zh., 2009, vol. 71, no. 3, pp. 347–354 [Colloid J. (Engl. transl.), 2009, vol. 71, no. 3, pp. 345–352].

    Google Scholar 

  23. Pyatnitskii, I.V. and Sukhan, V.V., Analiticheskaya khimiya serebra (Analytical Chemistry of Silver), Moscow: Nauka, 1975 [in Russian].

    Google Scholar 

  24. Sergeev, B.M., Kiryukhin, M.V., Prusov, A.N., and Sergeev, V.G., Synthesis of Silver Nanoparticles in Aqueous Solutions of Polyacrylic Acid, Vestn. Mosk. Univ., Ser. 2: Khim., 1999, vol. 40, no. 2, pp. 129–133.

    CAS  Google Scholar 

  25. Vegera, A.Z. and Zimon, A.D., Synthesis and Physicochemical Properties of Silver Nanoparticles Stabilized by Gelatin Izv. Tomsk. Politekh. Univ., 2006, vol. 309, no. 5, pp. 60–64.

    Google Scholar 

  26. Sun, Y.G. and Xia, Y.N., Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science (Washington), 2002, vol. 298, no. 5601, pp. 2176–2179.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Olenin, A.V., Krutyakov, Yu.A., Kudrinskii, A.A., and Lisichkin, G.V., Formation of Surface Layers on Silver Nanoparticles in Aqueous and Water-Organic Media, Kolloidn. Zh., 2008, vol. 70, no. 1, pp. 78–84 [Colloid J. (Engl. transl.), 2008, vol. 70, no. 1, pp. 71–76].

    Google Scholar 

  28. Valuev, L.I., Valueva, T.A., Valuev, I.L., and Plate, N.A., Polymer Systems for Controlled Separation of Biologically Active Compounds, Usp. Biol. Khim., 2003, vol. 43, pp. 307–328.

    CAS  Google Scholar 

  29. Derjaguin, B.V. and Landau, L.D., Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes, Zh. Eksp. Teor. Fiz., 1941, vol. 11, no. 2, pp. 802–821.

    Google Scholar 

  30. Derjaguin, B.V., Teoriya ustoichivosti kolloidov i tonkikh plenok, Moscow: Nauka, 1986. Translated under the title Theory of Stability of Colloids and Thin Films, New York: Consultants Bureau, 1986.

    Google Scholar 

  31. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily, Moscow: Nauka, 1985. Translated under the title Surface Forces, New York: Plenum, 1987.

    Google Scholar 

  32. Derjaguin, B.V. and Churaev, N.V., Inclusion of Structural Forces in the Theory of Stability of Colloids and Films, J. Colloid Interface Sci., 1985, vol. 103, no. 2, pp. 542–553.

    Article  Google Scholar 

  33. Oshima, H.J., Healy, T.W., and White, L.R., Improvement on Hogg-Healy-Fuerstenau Formulas for the Interaction on Dissimilar Double Layers, J. Colloid Interface Sci., 1982, vol. 9, no. 2, pp. 484–493.

    Article  Google Scholar 

  34. Casimir, H. and Polder, D., The Influence of Retardation of the London-van der Waals Forces, Phys. Rev., 1948, vol. 73, no. 4, pp. 360–372.

    Article  MATH  CAS  ADS  Google Scholar 

  35. Schenkel, J.H. and Kitchener, J.A., A Test of the Derjaguin-Vervey-Overbeek Theory with a Colloid Suspensions, J. Chem. Soc., Faraday Trans., 1960, vol. 56, no. 1, pp. 161–163.

    CAS  Google Scholar 

  36. Visser, J., On Hamaker Constants: A Comparison between Hamaker Constants and Lifshitz-van der Waals Constants, Adv. Colloid Interface Sci., 1972, vol. 3, no. 4, pp. 331–363.

    Article  CAS  Google Scholar 

  37. Bergstrom, L., Hamaker Constants of Inorganic Materials, Adv. Colloid Interface Sci., 1997, vol. 70, no. 1, pp. 125–160.

    Article  CAS  MathSciNet  Google Scholar 

  38. Krutyakov, Yu.A., Kudrinskiy, A.A., Olenin, A.Yu., and Lisichkin, G.V., Synthesis and Properties of Silver Nanoparticles: Advances and Prospects, Usp. Khim., 2008, vol. 77, no. 3, pp. 342–269.

    Google Scholar 

  39. Acker, H.D., Franch, R.H., and Chiang, Y.-M., Comparisons of Hamaker Constants for Disperse Systems with Intervening Vacuum or Water: From Force Laws and Physical Properties, J. Colloid Interface Sci., 1996, vol. 179, pp. 460–469.

    Article  Google Scholar 

  40. Fundamentals of Interface and Colloid Science, Lyklema, J., Ed., London: Academic, 1995, vol. 2.

    Google Scholar 

  41. Yur’ev, V.I., On the Surface (Thermodynamic) Potential of Cellulose Fibers, in Mezhvuz. Sb. Nauchn. Tr.-Leningr. Lesotekh. Akad., 1980, vol. 36, pp. 50–53 [in Russian].

    Google Scholar 

  42. Lindstrom, N. and Eklund, D., Paper Chemistry: An Introduction, Grankulla: DT Paper Science, 1991.

    Google Scholar 

  43. Smolin, A.S., Shabaev, R.O., and Yakkola, P., Investigation of the Zeta Potential and Cationic Demand of Fiber Semiproducts, Khim. Rastit. Syr’ya, 2009, no. 1, pp. 177–184.

  44. Krentz, D.O., Lohmann, C., Schwarz, S., Bratskaya, S., Liebert, T., Laube, J., Heinze, T., and Kulicke, W.M., Properties and Flocculation Efficiency of Highly Cationized Starch Derivatives, Starch/Stärke, 2006, vol. 58, pp. 161–169.

    Article  CAS  Google Scholar 

  45. Zubova, K.V., Zubov, A.V., and Zubov, V.A., Investigation of the Distribution of Water Clusters in Vegetables, Fruits, and Natural Waters Used for Irrigation by Flicker Noise Spectroscopy, Biofizika, 2007, vol. 52, no. 4, pp. 585–592.

    Google Scholar 

  46. Zubova, K.V., Zubov, A.V., and Zubov, V.A., Cluster Structure of Liquid Alcohols, Water, and n-Hexane, Zh. Prikl. Spektrosk., 2005, vol. 72, no. 3, pp. 305–312 [J. Appl. Spectrosc. (Engl. transl.), 2005, vol. 72, no. 3, pp. 321–312].

    Google Scholar 

  47. Baran, A.A., Polimersoderzhashchie dispersnye sistemy (Polymer-Containing Disperse Systems), Kiev: Naukova Dumka, 1986 [in Russian].

    Google Scholar 

  48. Baran, A.A. and Platonov, B.E., Surface Electrical Characteristics of Disperse Systems Containing Polymers, Usp. Khim., 1981, vol. 50, pp. 161–191.

    CAS  Google Scholar 

  49. Derjaguin, B.V., Theory of Heterocoagulation, Interaction, and Adhesion of Dissimilar Particles in Electrolyte Solutions, Kolloidn. Zh., 1954, vol. 16, no. 6, pp. 425–438.

    Google Scholar 

  50. Efremov, I.F. and Us’yarov, O.G., The Long-Range Interaction between Colloid and other Particles and the Formation of Periodic Colloid Structures, Usp. Khim., 1976, vol. 45, no. 5, pp. 877–907.

    CAS  Google Scholar 

  51. Efremov, I.F., The Dilatancy of Colloidal Structures and Polymer Solutions, Usp. Khim., 1982, vol. 51, no. 2, pp. 285–310.

    CAS  Google Scholar 

  52. Roldughin, V.I., Self-Assembly of Nanoparticles at Interfaces, Usp. Khim., 2004, vol. 73, no. 2, pp. 123–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Efimenko.

Additional information

Original Russian Text © E.V. Golikova, O.Yu. Golubeva, E.Ya. Gurevich, L.P. Efimenko, K.E. Pugachev, 2010, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golikova, E.V., Golubeva, O.Y., Gurevich, E.Y. et al. Self-organization processes in the organic-inorganic disperse system containing silver nanoparticles. Glass Phys Chem 36, 332–344 (2010). https://doi.org/10.1134/S1087659610030107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659610030107

Key words

Navigation