Advertisement

Glass Physics and Chemistry

, Volume 36, Issue 3, pp 332–344 | Cite as

Self-organization processes in the organic-inorganic disperse system containing silver nanoparticles

  • E. V. Golikova
  • O. Yu. Golubeva
  • E. Ya. Gurevich
  • L. P. Efimenko
  • K. E. Pugachev
Article

Abstract

The morphology of complexly organized structures formed in polymer matrix under the action of silver nanoparticles has been investigated using atomic-force microscopy. The analysis of the set of experimental data and the results of the theoretical calculations of the pair interaction potentials has made it possible to propose the mechanism of formation of the “flower” structure, which is based on the interactions in the far potential minimum.

Key words

self-organization silver nanoparticles far potential minimum aggregation mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000 [in Russian].Google Scholar
  2. 2.
    Egorova, E.M., Revina, A.A., Rostovshchikova, T.N., and Kiseleva, O.I., Bactericidal and Catalytic Properties of Stable Metal Nanoparticles in Reverse Micelles, Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, no. 5, pp. 332–338.Google Scholar
  3. 3.
    Chen, S. and Carroll, D.L., Synthesis and Characterization of Truncated Triangular Silver Nanoplates, Nano Lett., 2002, vol. 34, no. 9, pp. 1003–1007.CrossRefADSGoogle Scholar
  4. 4.
    Karpov, S.V. and Slabko, V.V., Opticheskie i fotofizicheskie svoistva fraktal’no-strukturirovannykh zolei metallov (Optical and Photophysical Properties of Fractal-Structured Metal Sols), Novosibirsk: Siberian Branch of the Russian Academy of Sciences, 2003.Google Scholar
  5. 5.
    Chiganova, G.A., Preparation of Disperse Systems with Fractal Aggregates of Silver Nanoparticles, Zh. Sib. Fed. Univ. Tekh. Tekhnol., 2008, vol. 2, no. 1, pp. 155–161.Google Scholar
  6. 6.
    Sergeev, G.B., Nanochemistry of Metals, Usp. Khim., 2001, vol. 70, no. 10, pp. 915–953.Google Scholar
  7. 7.
    Roldughin, V.I., Quantum-Size Colloid Metal Systems, Usp. Khim., 2000, vol. 69, no. 10, pp. 899–923.Google Scholar
  8. 8.
    Bukhtiyarov, V.I. and Slin’ko, M.G., Metallic Nanosystems in Catalysis, Usp. Khim., 2001, vol. 70, no. 2, pp. 167–181.Google Scholar
  9. 9.
    Ershov, B.G., Metal Nanoparticles in Aqueous Solutions: Electronic, Optical, and Catalytic Properties, Ross. Khim. Zh., 2001, vol. 45, no. 3, pp. 20–30.Google Scholar
  10. 10.
    Karpov, S.V., Bas’ko, A.L., Popov, A.K., and Slabko, V.V., Optical Spectra of Silver Colloids Within the Framework of Fractal Physics, Kolloidn. Zh., 2000, vol. 62, no. 6, pp. 773–790 [Colloid J. (Engl. transl.), 2000, vol. 62, no. 6, pp. 699–713].Google Scholar
  11. 11.
    Karpov, S.V., Bas’ko, A.L., Popov, A.K., and Slabko, V.V., Specific Features of Absorption Spectra of Fractal-Structured Silver Sols, Opt. Spektrosk., 2003, vol. 95, no. 2, pp. 264–270 [Opt. Spectrosc. (Engl. transl.), 2003, vol. 95, no. 2, pp. 241–247].Google Scholar
  12. 12.
    Saifullina, I.R., Chiganova, G.A., Karpov, S.V., and Slabko, V.V., Preparation of Composite Films with Silver Nanoparticles and Their Fractal Aggregates in a Polymeric Matrix, Zh. Prikl. Khim. (St. Petersburg), 2006, vol. 79, no. 10, pp. 1660–1663 [Russ. J. Appl. Chem. (Engl. transl.), 2006, vol. 79, no. 10, pp. 1639–1642].Google Scholar
  13. 13.
    Head, S.M., The Characterization of Ag Ions by Electron Microscopy, Optical Adsorption, and Electrophoresis, J. Colloid Interface Sci., 1983, vol. 93, no. 2, pp. 545–555.CrossRefGoogle Scholar
  14. 14.
    Fridrikhsberg, D.A., Kurs Kolloidnoi Khimii (Course of Colloid Chemistry), Leningrad: Khimiya, 1974 [in Russian].Google Scholar
  15. 15.
    Kroyt, H.R., Colloid Science, Amsterdam: Elsevier, 1952, vol. 1. Translated under the title Nauka o kolloidakh, Moscow: Inostrannaya Literatura, 1955, vol. 1.Google Scholar
  16. 16.
    Enustun, B.V., Coagulation of Colloid Gold, J. Am. Chem. Soc., 1963, vol. 85, no. 21, pp. 3317–3330.CrossRefGoogle Scholar
  17. 17.
    Smirnov, B.M., Fractal Clusters, Usp. Fiz. Nauk, 1986, vol. 149, no. 2, pp. 177–219 [Sov. Phys.—Usp. (Engl. transl.), 1986, vol. 29, no. 6, 481–505].Google Scholar
  18. 18.
    Karpov, S.V., Bas’ko, A.L., Koshelev, S.V., Popov, A.K., and Slabko, V.V., Dependence of the Rate of Photoinitiated Formation of Fractal Aggregates in Silver Hydrosols on the Wavelength of Irradiating Light, Kolloidn. Zh., 1997, vol. 59, no. 6, pp. 765–773 [Colloid J. (Engl. transl.), 1997, vol. 59, no. 6, pp. 708–716].Google Scholar
  19. 19.
    Karpov, S.V., Isaev, I.L., Gavrilyuk, A.P., and Gerasimov, V.S., General Principles of the Crystallization of Nanostructured Disperse Systems, Kolloidn. Zh., 2009, vol. 71, no. 3, pp. 314–329 [Colloid J. (Engl. transl.), 2009, vol. 71, no. 3, pp. 313–328].Google Scholar
  20. 20.
    Karpov, S.V., Slabko, V.V., and Chiganova, G.A., Physical Principles of the Photostimulated Aggregation of Metal Sols, Kolloidn. Zh., 2002, vol. 64, no. 4, pp. 474–492 [Colloid J. (Engl. transl.), 2002, vol. 64, no. 4, pp. 425–441].Google Scholar
  21. 21.
    Karpov, S.V., Popov, A.K., and Slabko, V.V., Photochromic Reactions in Silver Nanocomposites with a Fractal Structure and Their Comparative Characteristics, Zh. Tekh. Fiz., 2003, vol. 73, no. 6, pp. 90–98 [Tech. Phys. (Engl. transl.), 2003, vol. 48, no. 6, pp. 749–756].Google Scholar
  22. 22.
    Karpov, S.V., Isaev, I.L., Gavrilyuk, A.P., Gerasimov, V.S., and Grachev, A.S., Effect of Electron Tunneling on the Crystallization of Nanostructured Metal Sols, Kolloidn. Zh., 2009, vol. 71, no. 3, pp. 347–354 [Colloid J. (Engl. transl.), 2009, vol. 71, no. 3, pp. 345–352].Google Scholar
  23. 23.
    Pyatnitskii, I.V. and Sukhan, V.V., Analiticheskaya khimiya serebra (Analytical Chemistry of Silver), Moscow: Nauka, 1975 [in Russian].Google Scholar
  24. 24.
    Sergeev, B.M., Kiryukhin, M.V., Prusov, A.N., and Sergeev, V.G., Synthesis of Silver Nanoparticles in Aqueous Solutions of Polyacrylic Acid, Vestn. Mosk. Univ., Ser. 2: Khim., 1999, vol. 40, no. 2, pp. 129–133.Google Scholar
  25. 25.
    Vegera, A.Z. and Zimon, A.D., Synthesis and Physicochemical Properties of Silver Nanoparticles Stabilized by Gelatin Izv. Tomsk. Politekh. Univ., 2006, vol. 309, no. 5, pp. 60–64.Google Scholar
  26. 26.
    Sun, Y.G. and Xia, Y.N., Shape-Controlled Synthesis of Gold and Silver Nanoparticles, Science (Washington), 2002, vol. 298, no. 5601, pp. 2176–2179.CrossRefPubMedADSGoogle Scholar
  27. 27.
    Olenin, A.V., Krutyakov, Yu.A., Kudrinskii, A.A., and Lisichkin, G.V., Formation of Surface Layers on Silver Nanoparticles in Aqueous and Water-Organic Media, Kolloidn. Zh., 2008, vol. 70, no. 1, pp. 78–84 [Colloid J. (Engl. transl.), 2008, vol. 70, no. 1, pp. 71–76].Google Scholar
  28. 28.
    Valuev, L.I., Valueva, T.A., Valuev, I.L., and Plate, N.A., Polymer Systems for Controlled Separation of Biologically Active Compounds, Usp. Biol. Khim., 2003, vol. 43, pp. 307–328.Google Scholar
  29. 29.
    Derjaguin, B.V. and Landau, L.D., Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes, Zh. Eksp. Teor. Fiz., 1941, vol. 11, no. 2, pp. 802–821.Google Scholar
  30. 30.
    Derjaguin, B.V., Teoriya ustoichivosti kolloidov i tonkikh plenok, Moscow: Nauka, 1986. Translated under the title Theory of Stability of Colloids and Thin Films, New York: Consultants Bureau, 1986.Google Scholar
  31. 31.
    Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Poverkhnostnye sily, Moscow: Nauka, 1985. Translated under the title Surface Forces, New York: Plenum, 1987.Google Scholar
  32. 32.
    Derjaguin, B.V. and Churaev, N.V., Inclusion of Structural Forces in the Theory of Stability of Colloids and Films, J. Colloid Interface Sci., 1985, vol. 103, no. 2, pp. 542–553.CrossRefGoogle Scholar
  33. 33.
    Oshima, H.J., Healy, T.W., and White, L.R., Improvement on Hogg-Healy-Fuerstenau Formulas for the Interaction on Dissimilar Double Layers, J. Colloid Interface Sci., 1982, vol. 9, no. 2, pp. 484–493.CrossRefGoogle Scholar
  34. 34.
    Casimir, H. and Polder, D., The Influence of Retardation of the London-van der Waals Forces, Phys. Rev., 1948, vol. 73, no. 4, pp. 360–372.MATHCrossRefADSGoogle Scholar
  35. 35.
    Schenkel, J.H. and Kitchener, J.A., A Test of the Derjaguin-Vervey-Overbeek Theory with a Colloid Suspensions, J. Chem. Soc., Faraday Trans., 1960, vol. 56, no. 1, pp. 161–163.Google Scholar
  36. 36.
    Visser, J., On Hamaker Constants: A Comparison between Hamaker Constants and Lifshitz-van der Waals Constants, Adv. Colloid Interface Sci., 1972, vol. 3, no. 4, pp. 331–363.CrossRefGoogle Scholar
  37. 37.
    Bergstrom, L., Hamaker Constants of Inorganic Materials, Adv. Colloid Interface Sci., 1997, vol. 70, no. 1, pp. 125–160.CrossRefMathSciNetGoogle Scholar
  38. 38.
    Krutyakov, Yu.A., Kudrinskiy, A.A., Olenin, A.Yu., and Lisichkin, G.V., Synthesis and Properties of Silver Nanoparticles: Advances and Prospects, Usp. Khim., 2008, vol. 77, no. 3, pp. 342–269.Google Scholar
  39. 39.
    Acker, H.D., Franch, R.H., and Chiang, Y.-M., Comparisons of Hamaker Constants for Disperse Systems with Intervening Vacuum or Water: From Force Laws and Physical Properties, J. Colloid Interface Sci., 1996, vol. 179, pp. 460–469.CrossRefGoogle Scholar
  40. 40.
    Fundamentals of Interface and Colloid Science, Lyklema, J., Ed., London: Academic, 1995, vol. 2.Google Scholar
  41. 41.
    Yur’ev, V.I., On the Surface (Thermodynamic) Potential of Cellulose Fibers, in Mezhvuz. Sb. Nauchn. Tr.-Leningr. Lesotekh. Akad., 1980, vol. 36, pp. 50–53 [in Russian].Google Scholar
  42. 42.
    Lindstrom, N. and Eklund, D., Paper Chemistry: An Introduction, Grankulla: DT Paper Science, 1991.Google Scholar
  43. 43.
    Smolin, A.S., Shabaev, R.O., and Yakkola, P., Investigation of the Zeta Potential and Cationic Demand of Fiber Semiproducts, Khim. Rastit. Syr’ya, 2009, no. 1, pp. 177–184.Google Scholar
  44. 44.
    Krentz, D.O., Lohmann, C., Schwarz, S., Bratskaya, S., Liebert, T., Laube, J., Heinze, T., and Kulicke, W.M., Properties and Flocculation Efficiency of Highly Cationized Starch Derivatives, Starch/Stärke, 2006, vol. 58, pp. 161–169.CrossRefGoogle Scholar
  45. 45.
    Zubova, K.V., Zubov, A.V., and Zubov, V.A., Investigation of the Distribution of Water Clusters in Vegetables, Fruits, and Natural Waters Used for Irrigation by Flicker Noise Spectroscopy, Biofizika, 2007, vol. 52, no. 4, pp. 585–592.Google Scholar
  46. 46.
    Zubova, K.V., Zubov, A.V., and Zubov, V.A., Cluster Structure of Liquid Alcohols, Water, and n-Hexane, Zh. Prikl. Spektrosk., 2005, vol. 72, no. 3, pp. 305–312 [J. Appl. Spectrosc. (Engl. transl.), 2005, vol. 72, no. 3, pp. 321–312].Google Scholar
  47. 47.
    Baran, A.A., Polimersoderzhashchie dispersnye sistemy (Polymer-Containing Disperse Systems), Kiev: Naukova Dumka, 1986 [in Russian].Google Scholar
  48. 48.
    Baran, A.A. and Platonov, B.E., Surface Electrical Characteristics of Disperse Systems Containing Polymers, Usp. Khim., 1981, vol. 50, pp. 161–191.Google Scholar
  49. 49.
    Derjaguin, B.V., Theory of Heterocoagulation, Interaction, and Adhesion of Dissimilar Particles in Electrolyte Solutions, Kolloidn. Zh., 1954, vol. 16, no. 6, pp. 425–438.Google Scholar
  50. 50.
    Efremov, I.F. and Us’yarov, O.G., The Long-Range Interaction between Colloid and other Particles and the Formation of Periodic Colloid Structures, Usp. Khim., 1976, vol. 45, no. 5, pp. 877–907.Google Scholar
  51. 51.
    Efremov, I.F., The Dilatancy of Colloidal Structures and Polymer Solutions, Usp. Khim., 1982, vol. 51, no. 2, pp. 285–310.Google Scholar
  52. 52.
    Roldughin, V.I., Self-Assembly of Nanoparticles at Interfaces, Usp. Khim., 2004, vol. 73, no. 2, pp. 123–156.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • E. V. Golikova
    • 1
  • O. Yu. Golubeva
    • 1
  • E. Ya. Gurevich
    • 2
  • L. P. Efimenko
    • 1
  • K. E. Pugachev
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.OOO Organic ProductSt. PetersburgRussia

Personalised recommendations