Advertisement

Glass Physics and Chemistry

, Volume 36, Issue 1, pp 92–99 | Cite as

Preparation and investigation of ion-conducting nanocomposite materials based on the aerosil-silver iodide system

Article

Abstract

The phase composition of samples in the aerosil-silver iodide system has been determined using X-ray diffractometry. It has been demonstrated that the sizes of crystals of the initial silver iodide, silver iodide in the initial aerosil-silver iodide powder, and silver iodide in the aerosil-silver iodide powder after heat treatment are approximately identical to each other and equal to about 55 nm. The average size and specific surface area of particles of the initial dispersed aerosil have been determined by the adsorption method (Brunauer-Emmett-Teller method). The average particle size is approximately equal to 12 nm, and the specific surface area is ∼220 m2/g. The electrical properties of ion-conducting nanocomposite materials based on the aerosil-silver iodide system have been studied by impedance spectroscopy in the temperature range 20–160°C. An increase in the silver halide content in the mixture with the aerosil leads to an increase in the electrical conductivity. The ionic component of the electrical conductivity is dominant for glasses with a high silver halide content.

Key words

aerosil silver halides nanocomposite ionic conductivity superionic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: St. Petersburg State University, 2000, vol. 1 [in Russian].Google Scholar
  2. 2.
    Tver’yanovich, Yu.S., Bal’makov, M.D., Tomaev, V.V., and Zyukhin, I.S., On the Variation of the Structure of Nanocomposite Solid Electrolytes, Fiz. Khim. Stekla, 2006, vol. 32, no. 4, pp. 674–677 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 4, pp. 491–493].Google Scholar
  3. 3.
    Tver’yanovich, Yu.S., Bal’makov, M.D., Tomaev, V.V., Borisov, E.N., and Volobueva, O., Ion-Conducting Multilayer Films Based on Alternating Nanolayers Ag3SI, AgI and Ag2S, AgI, Fiz. Khim. Stekla, 2008, vol. 34, no. 2, pp. 196–201 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 2, pp. 150–154].Google Scholar
  4. 4.
    Sata, N., Jin-Phillipp, N.Y., Eberl, K., and Majer, J., Enhanced Ionic Conductivity and Mesoscopic Size Effects in Hetero-Structures of BaF2 and CaF2, Solid State Ionics, 2002, vols. 154–155, pp. 497–502.CrossRefGoogle Scholar
  5. 5.
    Lee, J.-S., Adams, St., and Maier, J., A Mesoscopic Heterostructure as the Origin of the Extreme Ionic Conductivity in AgI: Al2O3, Solid State Ionics, 2000, vols. 136–137, pp. 1261–1266.CrossRefGoogle Scholar
  6. 6.
    Uvarov, N.F. and Boldyrev, V.V., Size Effects in Chemistry of Heterogeneous Systems, Usp. Khim., 2001, vol. 70, no. 4, pp. 307–329.Google Scholar
  7. 7.
    Uvarov, N.F., Production and Use of New Materials—Stabilization of Amorphous Phases in Ion-Conducting Composites, Zh. Prikl. Khim. (St. Petersburg), 2000, vol. 73, no. 6, pp. 970–975 [Russ. J. Appl. Chem. (Engl. transl.), 2000, vol. 73, no. 6, pp. 1030–1035].MathSciNetGoogle Scholar
  8. 8.
    Uvarov, N.F., Ionics of Nanoheterogeneous Materials, Usp. Khim., 2007, vol. 76, no. 5, pp. 454–473.Google Scholar
  9. 9.
    Smirnov, V.M., Khimiya nanostruktur: Sintez, stroenie, svoistva (Chemistry of Nanostructures: Synthesis, Structure, and Properties), St. Petersburg: St. Petersburg State University, 1996 [in Russian].Google Scholar
  10. 10.
    Vol’kenshtein, F.F., Elektronnye protsessy na poverkhnosti poluprovodnikov pri khemosorbtsii (Electronic Processes on the Surface of Semiconductors during Chemisorption), Moscow: Nauka, 1987 [in Russian].Google Scholar
  11. 11.
    Saifullin, R.S., Fizikokhimiya neorganicheskikh polimernykh i kompozitsionnykh materialov, Moscow: Khimiya, 1990 [in Russian].Google Scholar
  12. 12.
    Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1977. Translated under the title Fizicheskaya khimiya poverkhnostei, Moscow: Mir, 1979.Google Scholar
  13. 13.
    West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1984. Translated under the title Khimiya tverdogo tela: Teoriya i prilozheniya, Moscow: Mir, 1988.Google Scholar
  14. 14.
    Tomaev, V.V., Miroshkin, V.P., and Gar’kin, L.N., Temperature Investigation of the Electrical Properties of the 0.9SnO2+0.1CuO Two-Phase Composite by Impedance Spectroscopy, Fiz. Khim. Stekla, 2006, vol. 32, no. 4, pp. 666–673 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 4, pp. 486–490].Google Scholar
  15. 15.
    Tomaev, V.V., Gar’kin, L.N., Miroshkin, V.P., and Moshnikov, V.A., Investigation into the Gas Sensitivity in Nanostructured Films Based on Tin Dioxide by Impedance Spectroscopy, Fiz. Khim. Stekla, 2005, vol. 31, no. 2, pp. 331–339 [Glass Phys. Chem. (Engl. transl.), 2005, vol. 31, no. 2, pp. 246–251].Google Scholar
  16. 16.
    Uvarov, N.F., Vanêk, P., Savinov, M., Železný, V., Studniĉka, V., and Petzelt, J., Percolation Effect, Thermodynamic Properties of AgI and Interface Phases in AgI-Al2O3 Composites, Solid State Ionics, 2000, vol. 127, pp. 253–267.CrossRefGoogle Scholar
  17. 17.
    Guo, Y.-G., Lee, J.-S., and Maier, J., Preparation and Characterization of AgI Nanoparticles with Controlled Size, Morphology, and Crystal Structure, Solid State Ionics, 2000, vols. 136–137, pp. 1261–1266.Google Scholar
  18. 18.
    Barzàn, J.C., Garcia, N.J., Dristas, J.A., and Spetter, C.V., Ionic Conductivity in Montmorillonite-Doped Silver Iodide, Solid State Ionics, 2004, vol. 170, pp. 57–61.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Tomaev
    • 1
  • A. T. Nakusov
    • 1
  • E. G. Zemtsova
    • 1
  1. 1.Department of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations