Glass Physics and Chemistry

, Volume 35, Issue 6, pp 613–619 | Cite as

Atomic modeling and prediction of the structure, energy characteristics of point defects, and thermodynamic and elastic properties of the simple and complex beryllium oxides



A set of partially covalent interatomic potentials has been developed with the aim of reproducing the experimentally known crystal structures and predicting the unknown crystal structures and the thermodynamic and elastic properties of bromellite BeO, chrysoberyl BeAl2O4, and its isostructural analogs BeCr2O4 and BeFe2O4. The calculated structural, elastic, and thermodynamic properties of these minerals are in good agreement with the available experimental data. This gives grounds to believe that the prediction of a number of unknown properties of these compounds and the model crystal structure of Fe chrysoberyl are sufficiently reliable. A theoretical analysis of the energy characteristics of the Schottky and Frenkel point defects is carried out for all the substances under investigation.


Beryllium Atomic Modeling Glass Physic Beryllium Oxide Chrysoberyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shein, I.R., Kiiko, V.S., Makurin, Yu.N., Gorbunova, M.A., and Ivanovskii, A.L., Elastic Parameters of Single-Crystal and Polycrystalline Wurtzite-Like Oxides BeO and ZnO: Ab Initio Calculations, Fiz. Tverd. Tela (St. Petersburg), 2007, vol. 49, no. 6, pp. 1015–1020 [Phys. Solid State (Engl. transl.), 2007, vol. 49, no. 6, pp. 1067–1073].Google Scholar
  2. 2.
    Gale, J.D. and Rohl, A.L., The General Utility Lattice Program (GULP), Mol. Simul., 2003, vol. 29, no. 5, pp. 291–341.MATHCrossRefGoogle Scholar
  3. 3.
    Eremin, H.H., Talis, R.A., and Urusov, V.S., Computer Modeling of the Local Structure, Mixing Properties, and Stability of Binary Oxide Substitutional Solid Solutions in the Corundum-Eskolaite-Hematite System, Kristallografiya, 2008, vol. 53, no. 5, pp. 802–807 [Crystallogr. Rep. (Engl. transl.), 2008, vol. 53, no. 5, pp. 755–763].Google Scholar
  4. 4.
    Vidal-Valat, G., Vidal, J.P., Kurki-Suonio, K., and Kurki-Suonio, R., Multipole Analysis of X-Ray Diffraction Data on BeO, Acta Crystallogr., Sect. A: Found. Crystallogr., 1987, vol. 43, pp. 540–550.CrossRefGoogle Scholar
  5. 5.
    Sirota, N.N., Kuzmina, A.M., and Orlova, N.S., Debye-Waller Factors and Elastic Constants for Beryllium Oxide at Temperatures between 10 and 720 K (I). Anisotropy of Ionic Mean-Square Displacements, Cryst. Res. Technol., 1992, vol. 27, pp. 703–709.CrossRefGoogle Scholar
  6. 6.
    Robie, R.A. and Hemingway, B.S., Thermodynamic Properties of Minerals and Related Substances, US Geol. Surv. Bull. (Washington, DC), 1995, no. 2131.Google Scholar
  7. 7.
    Sofronov, A.A. Gorbunova, M.A., Makurin, Yu.N., Kiiko, V.S., and Ivanovskii, A.L., Intrinsic Point Defects and Electron-Energetic Characteristics of Hexagonal Monoxide of Beryllium, Zh. Strukt. Khim., 2006, vol. 47, no. 4, pp. 773–775 [J. Struct. Chem. (Engl. transl.), 2006, vol. 47, no. 4, pp. 760–763].Google Scholar
  8. 8.
    Hazen, R.M., High-Pressure Crystal Chemistry of Chrysoberyl, Al2BeO4: Insights on the Origin of Olivine Elastic Anisotropy, Phys. Chem. Miner., 1987, vol. 14, pp. 13–20.CrossRefADSGoogle Scholar
  9. 9.
    Weir, C.E. and van Valkenburg, A., J. Res. Natl. Bur. Stand., Sect. A, 1960, vol. 64, pp. 103–106.Google Scholar
  10. 10.
    Santoro, R.P. and Newnham, R.E., Magnetic Properties of Chromium Chrysoberyl, J. Am. Ceram. Soc., 1964, vol. 47, pp. 491–502.CrossRefGoogle Scholar
  11. 11.
    Semin, E.G., Zubenko, L.V., Zubenko, V.P., and Manakov, V.M., Investigation of the Mechanism and Kinetics of the Formation of Chrysoberyl, Zh. Neorg. Khim., 1976, vol. 21, no. 1, pp. 273–278.Google Scholar
  12. 12.
    Suvorov, S.A., Semin, E.G., and Gusarov, V.V., Fazovye diagrammy i termodinamika oksidnykh tverdykh rastvorov (Phase Diagrams and Thermodynamics of Oxide Solid Solutions), Leningrad: Leningrad State University, 1986 [in Russian].Google Scholar
  13. 13.
    Bukin, G.V., Matrosov, V.N., Orekhova, V.P., Remigailo, Y.L., Sevastyanov, B.K., Syomin, E.G., Solntsev, V.P., and Tsvetkov, E.G., Growth of Alexandrite Crystals and Investigation of Their Properties, J. Cryst. Growth, 1981, vol. 52, pp. 537–541.CrossRefADSGoogle Scholar
  14. 14.
    Kaminskii, A.A., Aminov, L.K., Ermolaev, V.L., Kravchenko, V.B., Mill, B.V., Perlin, Yu.E., Petrosyan, A.G., Pukhov, K.K., Sakun, V.P., Sarkisov, S.E., Sveshnikova, E.B., Skripko, G.A., Starostin, N.V., and Shkadarevich, A.P., Fizika i spektroskopiya lazernykh kristallov (Physics and Spectroscopy of Laser Crystals), Moscow: Nauka, 1986 [in Russian].Google Scholar
  15. 15.
    Gusarov, V.V. and Semin, E.G., Phase Diagram of the Subsolidus Region of the BeAl2O4-[BeFe2O4] Pseudobinary System, Zh. Neorg. Khim., 1992, vol. 37, pp. 2092–2096.Google Scholar
  16. 16.
    Wang, H., Gupta, M.C., and Simmons, G., Chrysoberyl (Al2BeO4): Anomaly in Velocity-Density Systematics, J. Geophys. Res., 1975, vol. 80, pp. 3761–3764.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • N. N. Eremin
    • 1
  • N. A. Gromalova
    • 1
  • V. S. Urusov
    • 1
  1. 1.Faculty of GeologyMoscow State UniversityMoscowRussia

Personalised recommendations