Glass Physics and Chemistry

, Volume 35, Issue 2, pp 210–218 | Cite as

Analysis of the formation of Al2O3 + Fe nanocomposites

  • O. Yu. Goncharov
  • O. V. Karban’
  • O. M. Nemtsova
  • I. A. Il’in
Article

Abstract

The formation of Al2O3 + Fe nanocomposites (in the range 0–20 wt % Fe) in the course of three sequential processes, such as dispersion, compaction, and sintering at a temperature of 1573 K, is investigated. It is revealed that the sintering is accompanied by the formation of the spinel phase at interfaces. It is demonstrated that the composition of the sintered samples corresponds to an equilibrium composition at a temperature of approximately 1073 K and that the spinel phase serves as a barrier layer preventing oxidation of iron

Keywords

Boehmite Glass Physic Spinel Phase Equilibrium Composition Carbonyl Iron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kislyi, P.S., Bodnaruk, N.I., Borovikova, M.S., Zaverukha, O.V., and Kozina, G.K., Kermety (Cermets), Kiev: Naukova Dumka, 1985 [in Russian].Google Scholar
  2. 2.
    Pulvermetallurgie, Sinter- und Verbundwerkstoffe, W. Schatt, Ed., Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, 1978. Translated under the title Poroshkovaya metallurgiya. Spechennye i kompozitsionnye materialy, Moscow: Metallurgiya, 1983 [in German and Russian].Google Scholar
  3. 3.
    Schicker, S., Erny, T., García, D.E., Janssen, R. and Claussen, N., Microstructure and Mechanical Properties of Al-Assisted Sintered Fe/Al2O3 Cermets, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2455–2463.CrossRefGoogle Scholar
  4. 4.
    Composite Materials, Broutman, L. and Crock, R. Eds., vol. 1: Interfaces in Metal Matrix Composites, Metcalfe, A., Ed., New York: Academic, 1974. Translated under the title Kompozitsionnye materialy, Tom 1: Poverkhnosti razdela v metallicheskikh kompozitakh, Moscow: Mir, 1978.Google Scholar
  5. 5.
    Nagel, R. and Balogh, A.G., On the Behavior of Enhanced Mixing in Metal/Ceramic Interfaces, Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, vols. 175–177, pp. 398–402.CrossRefGoogle Scholar
  6. 6.
    Trumble, K.P., Thermodynamic Analysis of Aluminate Formation at Fe/Al2O3 and Cu/Al2O3 Interfaces, Acta Metall. Mater., 1992, vol. 40, pp. S105–S110.CrossRefADSGoogle Scholar
  7. 7.
    Guichard, J.L., Tillement, O., and Mocellin, A., Alumina-Cromium Cermets by Hot Pressing of Nanocomposite Powders, J. Eur. Ceram. Soc., 1998, vol. 18, pp. 1743–1752.CrossRefGoogle Scholar
  8. 8.
    Sun, X. and Yeomans, J., Optimization of a Ductile-Particle-Toughened Ceramic, J. Am. Ceram. Soc., 1996, vol. 79, no. 10, pp. 2701–2717.Google Scholar
  9. 9.
    Ji, Y. and Yeomans, J.A., Processing and Mechanical Properties of 5 vol. % Cr Nanocomposites, J. Eur. Ceram. Soc., 2002, vol. 22, pp. 1927–1936.CrossRefGoogle Scholar
  10. 10.
    Elsukov, E.P., Dorofeev, G.A., Ul’yanov, A.I., Zagainov, A.V., and Maratkanova, A.N., Mössbauer Spectroscopy and Magnetic Studies of Nanocrystalline Iron Produced by Milling in an Argon Atmosphere, Fiz. Met. Metalloved., 2001, vol. 91, no. 3, pp. 46–53 [Phys. Met. Metallogr. (Engl. transl.), 2001 vol. 91, no. 3, pp. 258–265].Google Scholar
  11. 11.
    Shelekhov, E.V., Program Package for X-Ray Diffraction Analysis of Polycrystals, in Abstracts of Papers of the National Conference on Application of X-Ray, Synchrotron Radiation, Neutrons, and Electrons for Material Characterization (RSNE-97), Dubna, 1997, vol. 3, pp. 316–320 [in Russian].Google Scholar
  12. 12.
    Nemtsova, O.M., The Method of Extraction of Subspectra with Appreciably Different Values of Hyperfine Interaction Parameters from Mössbauer Spectra, Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 244, pp. 501–507.CrossRefADSGoogle Scholar
  13. 13.
    Povstugar, V.I., Shakov, A.A., Mikhailov, S.S., Voronina, E.V. and Elsukov, E.P., Resolution of Complex X-Ray Photoelectron Spectra Using Fast Discrete Fourier Transformation with Improved Convergence Procedure: Assessment of the Usability of the Procedure, Zh. Anal. Khim., 1998, vol. 53, no. 8, pp. 795–799 [J. Anal. Chem. (Engl. transl.), 1998, vol. 53, no. 8, pp. 697–700].Google Scholar
  14. 14.
    Ivanov, V.V., Paranin, S.N., Vikhrev, A.N., and Nozdrin, A.A., Effectiveness of a Dynamic Technique for Compacting Nanometer-Sized Powders, Materialovedenie, 1997, no. 5, pp. 49–55.Google Scholar
  15. 15.
    Vatolin, N.A., Moiseev, G.K., and Trusov, B.G., Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh (Thermodynamic Simulation in High-Temperature Inorganic Systems), Moscow: Metallurgiya, 1994 [in Russian].Google Scholar
  16. 16.
    Coquay, P., Laurent, Ch., Peigney, A., Quénard, O., De Grave, E., and Vandenberghe, R.E., From Ceramic-Matrix Nanocomposites to the Synthesis of Carbon Nanotubes, Hyperfine Interact., 2000, vol. 130, pp. 275–299.CrossRefADSGoogle Scholar
  17. 17.
    Strohmeier, B.R., Leyden, D.E., Field, R.S., and Hercules, D.M., Surface Spectroscopic Characterization of Cu/Al2O3 Catalysts, J. Catal., 1985, vol. 94, pp. 514–530.CrossRefGoogle Scholar
  18. 18.
    Lindsay, J.R., Rose, H.J., Swartz, W.E., Watts, P.H., and Payburn, K.A., X-Ray Photoelectron Spectra of Aluminum Oxides: Structural Effects on the “Chemical Shift” Appl. Spectrosc., 1973, vol. 27, no. 1, pp. 1–5.CrossRefADSGoogle Scholar
  19. 19.
    Mani, B., Sitakara Rao, V., and Maiti, H.S., X-Ray and Electrical Conductivity Studies on Iron-Aluminium Mixed Oxides, J. Mater. Sci., 1980, vol. 15, pp. 925–930.CrossRefADSGoogle Scholar
  20. 20.
    Williams, G., Coles, G.S.V., Ferkel, H., and Riehmann, W., The Use of Nano-Crystalline Oxides as Gas Sensing Materials, in Proceedings of the International Conference on Solid-State Sensors and Actuators, Chicago, IL, United States, 1997, Chicago, 1997, pp. 551–554.Google Scholar
  21. 21.
    Kiselev, V.F. and Krylov, O.V., Adsorbtsionnye protsessy na poverkhnosti poluprovodnikov i dielektrikov, Moscow: Nauka, 1978 [Adsorption Processes on Semiconductor and Dielectric Surfaces, Berlin: Springer, 1985].Google Scholar
  22. 22.
    Djuričić, B., Pickering, S., McGarry, D., Tambuyser, P., and Thomas, P., Preparation and Properties of Alumina-Ceria Nano-Nano Composites, J. Mater. Sci., 1999, vol. 34, pp. 1911–1919.CrossRefGoogle Scholar
  23. 23.
    Sankara Raman S., Nampoori, V.P.N., Vallabhan, C.P.G., Ambadas, G., and Sugunan, S., Photoacoustic Study of the Effect of Degassing Temperature on Thermal Diffusivity of Hydroxyl Loaded Alumina, Appl. Phys. Lett., 1995, vol. 67, no. 20, pp. 2939–2941.CrossRefADSGoogle Scholar
  24. 24.
    Bansal, C., Metal-to-Ceramic Bonding in (Al2O3 + Fe) Cermets Studies by Mössbauer Spectroscopy, Bull. Mater. Sci., 1984, vol. 6, no. 1, pp. 13–16.CrossRefGoogle Scholar
  25. 25.
    Zhuk, N.P., Kurs teorii korrozii i zashchity metallov (Course of the Theory of Corrosion and Protection of Metals), Moscow: Metallurgiya, 1976 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • O. Yu. Goncharov
    • 1
  • O. V. Karban’
    • 1
    • 2
  • O. M. Nemtsova
    • 1
  • I. A. Il’in
    • 1
  1. 1.Physical-Technical Institute, Ural DivisionRussian Academy of SciencesIzhevskRussia
  2. 2.Institute of Radio-Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations