Investigation of the conditions for synthesis of Ce0.9Y0.1O2 dense coatings

  • Yu. A. Bakhteeva
  • E. V. Shalaeva
  • I. A. Leonidov
  • V. L. Kozhevnikov


The conditions for preparation of Ce0.9Y0.1O2 (CYO) oxide coatings on La0.8Sr0.2MnO3 (LSM) ceramic substrates by screen printing were investigated. The CYO compound was synthesized by the pyrolysis of polymer-salt composites with the aim of producing submicron powders with a uniform size distribution. Transmission electron microscopy of the microstructure of the CYO compound synthesized with ethylene glycol revealed that the synthesis product consists of ultrafine crystalline particles with an average size of 5–15 nm. The use of CYO nanopowders made it possible to prepare rather dense single-layer coatings on LSM substrates. It was demonstrated that annealing of the coatings at high temperatures leads to the recrystallization and coarsening of particles.


Manganite Solid Oxide Fuel Cell Solid State Ionic Glass Physic Screen Printing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ohno, Y., Nagata, S., and Sato, H., Effect of Electrode Materials on the Properties of High-Temperature Solid Electrolyte Fuel Cells, Solid State Ionics, 1981, vols. 3–4, pp. 439–442.CrossRefGoogle Scholar
  2. 2.
    Yamamoto, O., Takeda, Y., Kanno, R., and Noda, M., Perovskite-Type Oxides as Oxygen Electrodes for High Temperature Oxide Fuel Cells, Solid State Ionics, 1987, vol. 22, pp. 241–246.CrossRefGoogle Scholar
  3. 3.
    Kuščer, D., Holc, J., Hrovat, M., Bernik, S., Smardžija, Z., and Kolar, D., Interactions between a Thick Film LaMnO3 Cathode and YSZ SOFC Electrolyte during High Temperature Ageing, Solid State Ionics, 1995, vol. 78, pp. 79–85.CrossRefGoogle Scholar
  4. 4.
    Kostogloudis, G.Ch., Tsiniarakis, G., and Ftikos, Ch., Chemical Reactivity of Perovskite Oxide SOFC Cathodes and Yttria Stabilized Zirconia, Solid State Ionics, 2000, vol. 135, pp. 529–535.CrossRefGoogle Scholar
  5. 5.
    Mori, M., Abe, T., Itoh, H., Yamamoto, O., Shen, G.Q., Takeda, Y., and Imanishi, N., Reaction Mechanism between Lanthanum Manganite and Yttria Doped Cubic Zirconia, Solid State Ionics, 1999, vol. 123, pp. 113–119.CrossRefGoogle Scholar
  6. 6.
    Lee, H.Y. and Oh, S.M., Origin of Cathodic Degradation and New Phase Formation at the La0.9Sr0.1MnO3/YSZ Interface, Solid State Ionics, 1996, vol. 90, pp. 133–140.CrossRefGoogle Scholar
  7. 7.
    Mitterdorfer, A. and Gauckler, L.J., La2Zr2O7 Formation and Oxygen Reduction Kinetics of the La0.85Sr0.15MnyO3, O2(g)|YSZ System, Solid State Ionics, 1998, vol. 111, pp. 185–218.CrossRefGoogle Scholar
  8. 8.
    Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Shelton, J.P., Sprenkle, V.L., and Stevenson, J.W., Development of Lanthanum Ferrite SOFC Cathodes, J. Power Sources, 2003, vol. 113, pp. 1–10.CrossRefGoogle Scholar
  9. 9.
    Mai, A., Haanappel, V.A.C., Uhlenbruck, S., Tietz, F., and Stöver, D., Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part I. Variation of Composition, Solid State Ionics, 2005, vol. 176, pp. 1341–1350.CrossRefGoogle Scholar
  10. 10.
    Schäfer, W., Koch, A., Herold-Schmidt, U., and Stolten, D., Materials, Interfaces and Production Techniques for Planar Solid Oxide Fuel Cells, Solid State Ionics, 1996, vols. 86–88, pp. 1235–1239.CrossRefGoogle Scholar
  11. 11.
    Vidanov, A.M., Grinenko, E.Yu., Pleshko, Yu.K., Ponomarev, S.V., and Sotnikova, M.N., Composite Pastes for Screen Printing of High-Temperature Superconducting Thick Films, Vysokotemp. Sverkhprovodn., 1989, no. 3, pp. 44–50.Google Scholar
  12. 12.
    Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., and Exarhos, G.J., Glycine-Nitrate Combustion Synthesis of Oxide Ceramic Powders, Mater. Lett., 1990, vol. 10, pp. 6–12.CrossRefGoogle Scholar
  13. 13.
    Shankar, K.Sh. and Raychaudhuri, A.K., Low-Temperature Polymer Precursor-Based Synthesis of Nanocrystalline Particles of Lanthanum Calcium Manganese Oxide (La0.67C0.33MnO3) with Enhanced Ferromagnetic Transition Temperature, J. Mater. Res., 2006, vol. 21, no. 1, pp. 27–33.CrossRefGoogle Scholar
  14. 14.
    Park, H.-B., Kweon, H., and Kim, K., Preparation of La1 − xSrxMnO3 Powders by Combustion of Poly(ethylene glycol)-Metal Nitrate Gel Precursors, J. Mater. Sci., 1997, no. 32, pp. 57–65.Google Scholar
  15. 15.
    Segal, D., Chemical Synthesis of Ceramic Materials, J. Mater. Chem., 1997, vol. 7, no. (8), pp. 1297–1305.CrossRefGoogle Scholar
  16. 16.
    Deshpande, K., Mukasyan, A., and Varma, A., Aqueous Combustion Synthesis of Strontium-Doped Lanthanum Chromite Ceramics, J. Am. Ceram. Soc., 2003, vol. 86, no. 7, pp. 1149–1154.CrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Haung, X., Lu, Zh., Ge, X., Xu, J., Xin, X., Sha, X., and Su, W., Effect of Starting Powder on Screen-Printed YSZ Films Used as Electrolyte in SOFCs, Solid State Ionics, 2006, vol. 177, pp. 281–287.CrossRefGoogle Scholar
  18. 18.
    Zhang, Y.W., Yang, Y., Jin, S., Liao, C.S., and Yan, C.H., Doping Effect on the Grain Size and Microstrain in the Sol-Gel-Derived Rare Earth Stabilized Zirconia Nanocrystalline Thin Films, J. Mater. Sci. Lett., 2002, vol. 21, pp. 943–946.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • Yu. A. Bakhteeva
    • 1
  • E. V. Shalaeva
    • 1
  • I. A. Leonidov
    • 1
  • V. L. Kozhevnikov
    • 1
  1. 1.Institute of Solid-State Chemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations