Fragility and anharmonicity of lattice vibrations of glass-forming systems

  • D. S. Sanditov
  • A. A. Mashanov
  • B. D. Sanditov
  • V. V. Mantatov


The dependence of the fragility on the Grüneisen lattice parameter, which is a measure of the anharmonicity of lattice vibrations, is established for lead silicate and sodium borate glasses. An expression relating the fragility of glasses to the parameters of the Williams-Landell-Ferry equation is obtained. The calculation performed using this expression is in agreement with the results of the conventional determination of the fragility.


Glass Transition Temperature Lattice Vibration Glass Physic Glass Phys Lead Silicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angell, C.A., Perspective on the Glass Transition, J. Phys. Chem. Solids, 1988, vol. 49, no. 8, pp. 836–871.CrossRefGoogle Scholar
  2. 2.
    Novikov, V.N., Vibration Anharmonicity and Fast Relaxation in the Region of Glass Transition, Phys. Rev. B: Condens. Matter, 1998, vol. 58, pp. 8367–8378.Google Scholar
  3. 3.
    Sokolov, A.P., Rossler, E., Kisliuk, A., and Quitman, D., Dynamics of Strong and Fragile Glassformers: Differences, Phys. Rev. Lett., 1993, vol. 71, pp. 2062–2065.CrossRefGoogle Scholar
  4. 4.
    Bordat, P., Affouard, F., Descamps, M., and Ngai, K.L., Does the Interaction Potential Determine Both the Fragility of a Liquid and the Vibrational Properties of Its Glassy State? Preprint at http://arXiv.cond.mat./0401117, 2004.
  5. 5.
    Novikov, V.N. and Sokolov, A.P., Poisson’s Ratio and the Fragility of Glass-Forming Liquids, Nature (London), 2004, vol. 431, pp. 961–963.CrossRefGoogle Scholar
  6. 6.
    Ferry, J.D., Viscoelastic Properties of Polymers, New York, Wiley, 1961. Translated under the title Vyazkouprugie svoistva polimerov, Moscow: Inostrannaya Literatura, 1963.Google Scholar
  7. 7.
    Sanditov, D.S., Condition of Glass Transition in Liquids and Lindemann’s Criterion of Melting in the Excited Atom Model, Dokl. Akad. Nauk, 2003, vol. 390, no. 2, pp. 209–213 [Dokl. Phys. Chem. (Engl. transl.), 2003, vol. 390, no. 1–3, pp. 122–125].Google Scholar
  8. 8.
    Sanditov, D.S., The Model of Excited Atoms and Viscoelastic Properties of Polymers and Glasses, Vysokomol. Soedin., Ser. A, 2005, vol. 47, no. 3, pp. 478–489 [Polym. Sci., Ser. A (Engl. transl.), 2005, vol. 47, no. 3, pp. 289–298].Google Scholar
  9. 9.
    Sanditov, D.S. and Barteniev, G.M., Fizicheskie svoistva neuporyadochennykh struktur (The Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982 [in Russian].Google Scholar
  10. 10.
    Frenkel, J., Kineticheskaya teoriya zhidkostei, Moscow: USSR Academy of Sciences, 1945 [in Russian]. Translated under the title Kinetic Theory of Liquids, New York: Dover, 1955.Google Scholar
  11. 11.
    Sanditov, D.S. and Kozlov, G.V., Anharmonicity of Interatomic and Intermolecular Bonds and Physicomechanical Properties of Polymer Glasses, Fiz. Khim. Stekla, 1995, vol. 21, no. 6, pp. 549–578 [Glass Phys. Chem. (Engl. transl.), 1995, vol. 21, no. 6, pp. 392–409].Google Scholar
  12. 12.
    Sanditov, D.S. and Sangadiev, S.Sh., A New Approach to the Interpretation of the Fluctuation Free Volumes of Amorphous Polymers and Glasses, Vysokomol. Soedin., Ser. A, 1999, vol. 41, no. 6, pp. 977–10007 [Polym. Sci. (Engl. transl.), 1999, vol. 41, no. 6, pp. 643–663].Google Scholar
  13. 13.
    Mel’nichenko, T.D., Rizak, V.M., Mel’nichenko, T.N., and Fedelesh, V.I., Parameters of the Fluctuation Free Volume Theory for Glasses in the Ge-As-Se System, Fiz. Khim. Stekla, 2004, vol. 30, no. 5, pp. 553–564 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 5, pp. 406–414].Google Scholar
  14. 14.
    Sanditov, B.D., Darmaev, M.V., Sanditov, D.S., and Mantatov, V.V., Coefficient of Transverse Deformation and Anharmonism of Lattice Oscillations in Quasi-Isotropic Solids, Vysokomol. Soedin., Ser. A, 2007, vol. 49, no. 7, pp. 213–219 [Polym. Sci., Ser. A (Engl. transl.), 2007, vol. 49, no. 7, pp. 837–842].Google Scholar
  15. 15.
    Mazurin, O.V., Strel’tsina, M.V., and Shvaiko-Shvaikovskaya, T.N., Svoistva stekol i stekloobrazuyushchikh rasplavov: Spravochnik (Properties of Glasses and Glass-Forming Melts: A Handbook), Leningrad: Nauka, 1973, vol. 1 [in Russian].Google Scholar
  16. 16.
    Yannopoulos, S.N. and Johari, G.P., Poisson’s Ratio and Liquid’s Fragility, Nature (London), 2006, vol. 441, pp. E7–E8.CrossRefGoogle Scholar
  17. 17.
    Sanditov, B.D., Sangadiev, S.Sh., and Sanditov, D.S., Relaxation Time and Cooling Rate of a Liquid in the Glass Transition Range, Fiz. Khim. Stekla, 2007, vol. 33, no. 5, pp. 620–631 [Glass Phys. Chem. (Engl. transl.), 2007, vol. 33, no. 5, pp. 445–454].Google Scholar
  18. 18.
    Nemilov, S., Structural Aspect of Possible Interrelation between Fragility (Length) of Glass-Forming Melts and Poisson’s Ratio of Glasses, J. Non-Cryst. Solids, 2007, vol. 353, pp. 4613–4632.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • D. S. Sanditov
    • 1
    • 2
  • A. A. Mashanov
    • 1
  • B. D. Sanditov
    • 1
  • V. V. Mantatov
    • 1
  1. 1.Buryat State UniversityUlan-UdeRussia
  2. 2.Department of Physical Problems, Buryat Scientific Center, Siberian BranchRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations