Glass Physics and Chemistry

, Volume 33, Issue 6, pp 646–651 | Cite as

Investigation of the products of oxidation of lead selenide by IR spectroscopy

  • V. V. Tomaev
  • I. V. Chernyshova
  • P. A. Tikhonov


The optical properties of lead selenide powders are investigated by Fourier-transform IR spectroscopy at room temperature, as well as at temperatures of 500 and 550°C. The diffuse reflection spectra of the initial and heated powders of the PbSe compound are measured. It is revealed for the first time that the surface of the initial and heated samples of the PbSe compound contains a layer of amorphous biselenite Pb(HSeO3)2 · n H2O. This makes it possible to explain the previously observed local minimum at temperatures close to 100°C in the temperature dependence of the electrical resistivity of the powders.


Selenite PbSe Glass Physic Glass Phys Lead Selenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bube, R.H., Photoconductivity of Solids, New York: Wiley, 1960. Translated under the title Fotoprovodimost’ tverdykh tel, Lifshits, T.M., Ed., Moscow: Inostrannaya Literatura, 1962.Google Scholar
  2. 2.
    Popov, V.P., Tikhonov, P.A., and Tomaev, V.V., Investigation into the Mechanism of Oxidation on the Surface of Lead Selenide Semiconductor Structures, Fiz. Khim. Stekla, 2003, vol. 29, no. 5, pp. 686–694 [Glass Phys. Chem. (Engl. transl.), 2003, vol. 29, no. 5, pp. 494–500].Google Scholar
  3. 3.
    Tomaev, V.V., Makarov, L.L., Tikhonov, P.A., and Solomennikov, A.A., Oxidation Kinetics of Lead Selenide, Fiz. Khim. Stekla, 2004, vol. 30, no. 4, pp. 474–483 [Glass Phys. Chem. (Engl. transl.), 2004, vol. 30, no. 4, pp. 349–355].Google Scholar
  4. 4.
    Tomaev, V.V., Miroshkin, V.P., and Gar’kin, L.N., Influence of the Preparation Technique on the Resistance of the PbSe + PbSeO3 Two-Phase Composite, Fiz. Khim. Stekla, 2006, vol. 32, no. 5, pp. 790–795 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 5, pp. 579–582].Google Scholar
  5. 5.
    Tomaev, V.V., Miroshkin, V.P., and Gar’kin, L.N., Investigation into the Electrical Properties of the PbSe + PbSeO3 Two-Phase Composite by Impedance Spectroscopy, Fiz. Khim. Stekla, 2006, vol. 32, no. 5, pp. 796–802 [Glass Phys. Chem. (Engl. transl.), 2006, vol. 32, no. 5, pp. 583–586].Google Scholar
  6. 6.
    Tomaev, V.V., Makarov, L.L., Tikhonov, P.A., Popov, V.P., and Rozhdestvenskaya, I.V., Formation of Lead Selenide Crystallites in a Dielectric Matrix of Lead Selenite, Fiz. Khim. Stekla, 2005, vol. 31, no. 4, pp. 662–675 [Glass Phys. Chem. (Engl. transl.), 2005, vol. 31, no. 4, pp. 489–498].Google Scholar
  7. 7.
    Bestaev, M.V., Makhin, A.V., Moshnikov, V.A., and Tomaev, V.V., A Technique of Preparing a Batch Designed for Producing Lead and Tin Chalcogenide Solid Solutions by Vapor Phase Methods, RF Patent 2155830 (priority is applied for on July 9, 1997), 2000.Google Scholar
  8. 8.
    Fowless, A.D. and Stranks, D.R., Selenitometal Complexes: 1. Synthesis and Characterization of Selenito Complexes of Cobalt(III) and Their Equilibrium Properties in Solution, Inorg. Chem., 1977, vol. 16, no. 16, pp. 1271–1276.CrossRefGoogle Scholar
  9. 9.
    Verma, V.P., A Review of Synthetic, Thermoanalytical, IR, Raman, and X-ray Studies on Metal Selenites, Thermochim. Acta, 1999, vol. 327, nos. 1–2, pp. 63–102.CrossRefGoogle Scholar
  10. 10.
    Weckler, B. and Lutz, H.D., Lattice Vibration Spectra: Part XCV. Infrared Spectroscopic Studies on the Iron Oxide Hydroxides, Eur. J. Solid State Inorg. Chem., 1998, vol. 35, nos. 8–9, pp. 531–534.CrossRefGoogle Scholar
  11. 11.
    Lahtinen, M. and Valkonen, J., X-ray Powder Structure Determination and Thermal Behavior of a New Modification of Pb(II) Selenite, Chem. Mater., 2002, vol. 14, no. 4, pp. 1812–1817.CrossRefGoogle Scholar
  12. 12.
    Tolstoy, V.P., Chernyshova, I.V., and Skryshevsky, V.A., Handbook of Infrared Spectroscopy of Ultrathin Films, Hoboken: Wiley, 2003.Google Scholar
  13. 13.
    Unterderweide, K., Engelen, B., and Boldt, K., Strong Hydrogen Bonds in Acid Selenites: Correlation of Infrared Spectroscopic and Structural Data, J. Mol. Struct., 1994, vol. 322, nos. 1–3, pp. 233–239.CrossRefGoogle Scholar
  14. 14.
    Baumer, U., Boldt, K., Engelen, B., Muller, H., and Unterderweide, K., Darstellung, Kristallstruktur und IR-Spektren von BeSeO3 · H2O—Wasserstoffbrücken und Korrelation von IR-und Strukturdaten in den Monohydraten MSeO3 · H2O (M = Be, Ca, Mn, Co, Ni, Zn, Cd), Z. Anorg. Allg. Chem., 1999, vol. 625, no. 3, pp. 395–401.CrossRefGoogle Scholar
  15. 15.
    Iogansen, A.V., Infrared Spectroscopy and Spectral Determination of the Energy of Hydrogen Bonding, in Vodorodnaya svyaz’ (Hydrogen Bonding), Sokolov, N.D., Ed., Moscow: Nauka, 1986, pp. 112–155 [in Russian].Google Scholar
  16. 16.
    Wildner, M. and Andrut, M., Crystal Structures and Electronic Absorption Spectra of Two Modifications of Cr(SeO2OH)(Se2O5), J. Solid State Chem., 1998, vol. 135, no. 1, pp. 70–77.CrossRefGoogle Scholar
  17. 17.
    Davydov, A.A., Molecular Spectroscopy of Oxide Catalyst Surfaces, Hoboken: Wiley, 2003.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. V. Tomaev
    • 1
  • I. V. Chernyshova
    • 2
  • P. A. Tikhonov
    • 3
  1. 1.Department of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations