Glass Physics and Chemistry

, Volume 33, Issue 6, pp 562–568 | Cite as

Glass transformation studies in Ge-Se-Bi system

  • G. Achamma
  • D. Sushama
  • S. Asokan
  • A. M. Awasthi
  • P. Predeep


The thermal behavior of bulk glasses in the Ge20Se80 − x Bi x (x = 2.5, 4.0, 6.0 at %) system is studied using modulated differential scanning calorimetry (MDSC). All samples have the same thermal history as a result of heating to a temperature above the glass transition point, equilibrating, and then cooling. The total heat flow, modulated heat flow, reversing heat flow, and nonreversing heat flow under heating and cooling schedules are measured. The glass transition temperature T g , the relaxation enthalpy ΔH, the specific capacity C p , and the specific heat capacity difference ΔC p = C pl C pg , which characterize the thermal events in the glass transition region, are also determined. These parameters reveal an increase with x, which can be attributed to the increase in the average coordination number with an increase in the bismuth content (at %) in the composite. The ratio of heat capacities C pl /C pg , the width of the glass transition temperature range ΔT g , and the activation enthalpy for glass transition ΔH Tg are also studied. The values of the ratio C pl /C pg vary in the range between 1.038 and 1.112. The activation energy of crystallization is evaluated using the Kissinger, modified JMA, and Matusita equations, which is found to be in the range of 100.92 kJ/mol.


Glass Transition Temperature Glass Physic Chalcogenide Glass Average Coordination Number Glass Transition Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Surinach, S., Clavaguera, N., and Baro, M.D., Measurements of Structural Relaxation in Amorphous Fe40Ni40B20 by Differential Scanning Calorimetry, Mater. Sci. Eng., 1988, vol. 97, pp. 533–536.CrossRefGoogle Scholar
  2. 2.
    Savage, J.A., Infrared Optical Materials and Their Antireflection Coatings, London: Adam Hilger, 1985.Google Scholar
  3. 3.
    Marseglia, E.A. and Davis, E.A., Crystallization of Amorphous Selenium and As0.005Se0.995, J. Non-Cryst. Solids, 1982, vol. 50, pp. 13–21.CrossRefGoogle Scholar
  4. 4.
    Gao, Y.Q., Zheng, F.Q., and Ning, Y.T., in Proceedings of the IV International Conference on Rapidly Quenched Metals (RQM-4), Sendai, Japan, 1981, Sendai, 1981, vol. 1, p. 727.Google Scholar
  5. 5.
    Saffarini, G., Glass Transition Temperature and Molar Volume versus Average Coordination Number in Ge100 − xSex Bulk Glasses, Appl. Phys. A: Solids Surf., 1994, vol. 59, pp. 385–388.CrossRefGoogle Scholar
  6. 6.
    Ivanova, Z.G., Petkov, P., and Vassilev, V.S., Optical and Electrical Properties of Amorphous (GeS)100 − xGax Thin Films, J. Optoelectron. Adv. Mater., 2001, vol. 3, no. 2, p. 481–484.Google Scholar
  7. 7.
    Machewirth, D.P., Wei, K., Krasteva, V., Data, R., and Sigel, G.H., Jr., Optical Characterization of Pr3+ and Dy3+ Doped Chalcogenide Glasses J. Non-Cryst. Solids, 1997, vols. 213–214, pp. 295–303.CrossRefGoogle Scholar
  8. 8.
    Wei, K., Machewirth, D.P., Wenzel, J., Snitzer, E., and Sigel, G.H., Jr., Pr3+ Doped Ge-Ga-S Glasses for 1.3-nm Optical Fiber Amplifiers, J. Non-Cryst. Solids, 1995, vol. 182, pp. 257–261.CrossRefGoogle Scholar
  9. 9.
    Imran, M.M.A., Bhandari, D., and Saxena, N.S., Kinetic Studies of Bulk Ge22Se78 − xBix (x = 0, 4, and 8) Semiconducting Glasses, J. Therm. Anal. Calorim., 2001, vol. 65, no. 1, pp. 257–274.CrossRefGoogle Scholar
  10. 10.
    Bhatia, K.L, Gosain, D.P., and Bhatnagar, V.K., Evidence of Two Bi Sites from EPR of Mn2+ in Bi-Doped Amorphous Germanium Chalcogenides, Phys. Rev. B: Condens. Matter, 1987, vol. 35, pp. 4503–4506.Google Scholar
  11. 11.
    Phillips, J.C. and Cohen, M.L., Molecular Models of Giant Photo-Contractive Evaporated Chalcogenide Films, Phys. Rev. B: Condens. Matter, 1982, vol. 26, pp. 3510–3512.Google Scholar
  12. 12.
    Bhatia, K.L., Structural Properties of Doped n-Type Amorphous (GeSe3.5)100 − xBix, J. Non-Cryst. Solids, 1986, vol. 5, no. 2, pp. 181–182.Google Scholar
  13. 13.
    Gosain, D.P. and Bhatia, K.L., Pressure-Induced Structural Transformations in Bi-Doped Amorphous Germanium Sulfide, Phys. Rev. B: Condens. Matter, 1985, vol. 32, no. 4, pp. 2727–2730.Google Scholar
  14. 14.
    Murugavel, S. and Asokan, S., Carrier Type Reversal in Pb-Modified Chalcogenide Glasses, Phys. Rev. B: Condens. Matter, 1998, vol. 58, no. 8, pp. 4449–4453.Google Scholar
  15. 15.
    Phillips, J.C., Constraint Theory and Carrier-Type Reversal in Bi-Ge Chalcogenide Alloy Glasses, Phys. Rev. B: Condens. Matter, 1987, vol. 36, no. 8, pp. 4265–4270.Google Scholar
  16. 16.
    Wagner, T., Kasap, S.O., Vlcek, M., Sklenár, A., and Stronski, A., Modulated Temperature Differential Scanning Calorimetry and Raman Spectroscopy Studies of AsxS100 − x Glasses, J. Mater. Sci., 1998, vol. 33, pp. 5581–5588.CrossRefGoogle Scholar
  17. 17.
    Price, D.M., Modulated Temperature Thermomechanical Analysis, Thermochim. Acta, 2000, vol. 357–358, pp. 23–29.CrossRefGoogle Scholar
  18. 18.
    Cahn, R.W., Haasen, P., and Kramer, E.J., Mater. Sci. Technol., 1991, vol. 9, p. 119.Google Scholar
  19. 19.
    Bhatia, K.L., Gosain, D.P., Parthasarathy, G., and Gopal, E.S.R., Bismuth-Doped Amorphous Germanium Sulfide Semiconductors, Phys. Rev B: Condens. Matter, 1986, vol. 34, pp. 8786–8795.Google Scholar
  20. 20.
    Bhatia, K.L., Gosain, D.P., Parthasarathy, G., and Gopal, E.S.R., On the Structural Features of Doped Amorphous Chalcogenide Semiconductors, J. Non-Cryst. Solids, 1986, vol. 86, pp. 65–71.CrossRefGoogle Scholar
  21. 21.
    Tohge, N., Yamamoto Y, Minami, T., Tanaka, M., Preparation of n-Type Semiconducting Ge20Bi10Se70 Glass, Appl. Phys. Lett., 1979, vol. 34, pp. 10–15.CrossRefGoogle Scholar
  22. 22.
    Elliott, S.R. and Steel, A.T., Mechanism for Doping in Bi Chalcogenide Glasses, Phys. Rev. Lett., 1986, vol. 57, pp. 1316–1319.CrossRefGoogle Scholar
  23. 23.
    Mahadevan, S., Giridhar, A., and Singh, A.K., Calorimetric Measurements on As-Sb-Se Glasses, J. Non-Cryst. Solids, 1986, vol. 88, pp. 11–22.CrossRefGoogle Scholar
  24. 24.
    Savova, E. and Pamukchieva, V., Calorimetric Measurements on Ge-Sb-S Glasses, Semicond. Sci. Technol., 1997, vol. 12, pp. 185–188.CrossRefGoogle Scholar
  25. 25.
    Böhmer, R. and Angell, C.A., Correlations of the Non-Exponentiality and State Dependence of Mechanical Relaxations with Bond Connectivity in Ge-As-Se Supercooled Liquids, Phys. Rev. B: Condens. Matter, 1992, vol. 45, no. 17, pp. 10 091–10 094.Google Scholar
  26. 26.
    Jackle, J., On the Applicability of the Mode-Coupling Theory of Glass Transitions to Good Glass Formers J. Phys.: Condens. Matter., 1989, vol. 1, pp. 267–276.CrossRefGoogle Scholar
  27. 27.
    Kissinger, H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, vol. 29, pp. 1702–1705.CrossRefGoogle Scholar
  28. 28.
    Avrami, M., Kinetics of Phase Change: I. General Theory, J. Chem. Phys., 1939, vol. 7, no. 12, p. 1103–1112.CrossRefGoogle Scholar
  29. 29.
    Avrami, M., Kinetics of Phase Change: II. Transformation-Time Relations for Random Distribution of Nuclei, J. Chem. Phys., 1940, vol. 8, no. 2, pp. 212–224.CrossRefGoogle Scholar
  30. 30.
    Avrami, M., Granulation, Phase Change, and Microstructure Kinetics of Phase Change: Ill., J. Chem. Phys., 1941, vol. 9, no. 2, p. 177–184.CrossRefGoogle Scholar
  31. 31.
    Matusita, K. and Sakka, S., Kinetic Study of the Crystallization of Glass by Differential Scanning Calorimetry, Phys. Chem. Solids, 1979, vol. 20, no. 4, pp. 81–85.Google Scholar
  32. 32.
    White, K., Crane, R.L., and Snide, J.A., Crystallization Kinetics of As-Sb-S Glass in Bulk and Thin Film Forms, J. Non-Cryst. Solids, 1988, vol. 103, p. 210.CrossRefGoogle Scholar
  33. 33.
    Abu El-Oyoun, M., A Study of the Crystallization Kinetics of Ge20Te80 Chalcogenide Glass, J. Phys. D: Appl. Phys., 2000, vol. 33, pp. 2211–2217.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • G. Achamma
    • 1
  • D. Sushama
    • 1
  • S. Asokan
    • 2
  • A. M. Awasthi
    • 3
  • P. Predeep
    • 4
  1. 1.Condensed Matter Physics LaboratorySree Narayana CollegeKollam, KeralaIndia
  2. 2.Department of InstrumentationIndian Institute of ScienceBangaloreIndia
  3. 3.Thermodynamics LaboratoryCSRIndoreIndia
  4. 4.Molecular Electronics and Advanced Materials LaboratoryNITCalicutIndia

Personalised recommendations