Glass Physics and Chemistry

, Volume 33, Issue 4, pp 335–339 | Cite as

Structure of the mixed oxides Me x (Ce0.5Zr0.5)1−x O y (Me = Gd, Pr)

  • V. P. Kol’ko
  • D. A. Zyuzin
  • V. A. Sadykov
  • V. V. Kriventsov
  • E. M. Moroz
Proceedings of the Topical Meeting of the European Ceramic Society “Structural Chemistry of Partially Ordered Systems, Nanoparticles, and Nanocomposites” (St. Petersburg, Russia, June 27–29, 2006)


The structure of the mixed oxides Me x (Ce0.5Zr0.5)1−x O y (x = 0, 0.1–0.30; y < 2) doped with trivalent Gd and Pr metals is investigated using the X-ray powder diffraction analysis, the full-profile analysis of the diffraction pattern, and EXAFS spectroscopy. The mixed oxides are solid solutions with a structure similar to the CeO2 structure. An increase in the content of the introduced trivalent metal brings about an increase in the unit cell parameter and a disordering of the structure of the oxides under investigation.


Interatomic Distance Glass Physic Cerium Oxide Coherent Scattering Region Cation Sublattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Logan, D. and Shelef, M., Oxygen Availability in Mixed Cerium/Praseodymium Oxides and the Effect of Noble Metals, J. Mater. Res., 1994, vol. 9, no. 2, pp. 468–475.Google Scholar
  2. 2.
    Takasu, Y., Sugino, T., and Matsuda, Y., Electrical Conductivity of Praseodymia-Doped Ceria, J. Appl. Electrochem., 1984, vol. 14, no. 1, pp. 79–81.CrossRefGoogle Scholar
  3. 3.
    Nauer, M., Ftikos, C., and Steele, B.C.H., An Evaluation of Ce-Pr Oxides and Ce-Pr-Nb Oxide Mixed Conductors for Cathodes of Solid Oxide Fuel Cells: Structure, Thermal Expansion, and Electrical Conductivity, J. Eur. Ceram. Soc., 1994, vol. 14, no. 6, pp. 493–499.CrossRefGoogle Scholar
  4. 4.
    Kaspar, J., Fornasiero, P., and Graziani, M., Use of CeO2-Based Oxides in the Three-Way Catalysis, Catal. Today, 1999, vol. 50, no. 2, pp. 285–298.CrossRefGoogle Scholar
  5. 5.
    Nigge, U., Wiemhöfer, H.-D., Römer, E.W.J., Bouwmeester, H.J.M., and Schulte, T.R., Composites of Ce0.8Gd0.2O1.9 and Gd0.7Ca0.3CoO3−δ as Oxygen Permeable Membranes for Exhaust Gas Sensors, Solid State Ionics, 2002, vol. 146, nos. 1–2, pp. 163–164.CrossRefGoogle Scholar
  6. 6.
    Otsuka, K., Sunada, E., Ushiyama, T., and Yamanaka, I., The Production of Synthesis Gas by Redox of Cerium Oxide, Stud. Surf. Sci. Catal., 1997, vol. 107, pp. 531–536.Google Scholar
  7. 7.
    Trovarelli, A., Catalytic Properties of Ceria and CeO2-Containing Materials, Catal. Rev.—Sci. Eng., 1996, vol. 38, no. 4, pp. 439–520.CrossRefGoogle Scholar
  8. 8.
    Fornasiero, P., Balducci, G., Di Monte, R., and Kašpar, J., Modification of the Redox Behaviour of CeO2 Induced by Structural Doping with ZrO2, J. Catal., 1996, vol. 164, no. 1, pp. 173–183.CrossRefGoogle Scholar
  9. 9.
    Pechini, M.P., Method of Preparing Lead and Alkaline-Earth Titanates and Niobates and Coating Methods Using the Same to Form a Capacitor, US Patent 3330697, 1967.Google Scholar
  10. 10.
    Kuznetsova, T.G., Sadykov, V.A., Moroz, E.M., Trukhan, S.N., Paukshtis, E.A., Kolomiichuk, V.N., Burgina, E.B., Zaikovskii, V.I., Fedotov, M.A., Lunin, V.V., and Kemnitz, E., Preparation of Ce-Zr-O Composites by a Polymerized Complex Method, Stud. Surf. Sci. Catal., 2002, vol. 143, pp. 659–667.CrossRefGoogle Scholar
  11. 11.
    Kochubei, D.I., Methods for Extracting Structural Information from EXAFS Spectra, in Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel. EXAFS-spektroskopiya (X-ray Spectroscopic Method for Investigation of the Structure of Amorphous Materials: EXAFS Spectroscopy), Novosibirsk: Nauka, 1988, pp. 171–213 [in Russian].Google Scholar
  12. 12.
    Binsted, N., Campbell, J.V., Gurman, S.J., and Stephenson, P.C., SERC Daresbury Laboratory EXCURV92 Program, Warrington, Cheshire (United Kingdom): Daresbury Laboratory, 1991.Google Scholar
  13. 13.
    Mamontov, E. and Egami, T., Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia, J. Phys. Chem. B, 2000, vol. 104, no. 47, pp. 11110–11116.CrossRefGoogle Scholar
  14. 14.
    Mamontov, E., Brezny, R., Koranne, M., and Egami, T., Nanoscale Heterogeneities and Oxygen Storage Capacity of Ce0.5Zr0.5O2, J. Phys. Chem. B, 2003, vol. 107, no. 47, pp. 13007–13014.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. P. Kol’ko
    • 1
  • D. A. Zyuzin
    • 1
  • V. A. Sadykov
    • 1
  • V. V. Kriventsov
    • 1
  • E. M. Moroz
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian DivisionRussian Academy of SciencesNovosibirskRussia

Personalised recommendations