Skip to main content
Log in

Determination of the particle sizes, microstrains, and degree of inhomogeneity in nanostructured materials from X-ray diffraction data

  • Proceedings of the Topical Meeting of the European Ceramic Society “Structural Chemistry of Partially Ordered Systems, Nanoparticles, and Nanocomposites” (St. Petersburg, Russia, June 27–29, 2006)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The mean particle size, the microstrains, and the degree of inhomogeneity in compacted and dispersed nanostructured materials are determined from the broadening of diffraction reflections. A method is described for separating the contributions from the small size of particles, the microstrains, and the inhomogeneity of materials to the broadening. The application of the proposed method is illustrated using a nanocrystalline powder of tungsten carbide WC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krivoglaz, M.A., Teoriya rasseyaniya rentgenovskikh luchei i teplovykh neitronov real’nymi kristallami (Theory of X-Ray and Thermal Neutron Scattering by Real Crystals), Moscow: Nauka, 1967 [in Russian].

    Google Scholar 

  2. Rempel’, A.A., Rempel’, S.V., and Gusev, A.I., Quantitative Assessment of Homogeneity of Nonstoichiometric Compounds, Dokl. Akad. Nauk, 1999, vol. 369, no. 4, pp. 486–490 [Dokl. Phys. Chem. (Engl. transl.), 1999, vol. 369, no. 4–6, pp. 321–325].

    CAS  Google Scholar 

  3. Rempel, A.A. and Gusev, A.I., Preparation of Disordered and Ordered Highly Nonstoichiometric Carbides and Evaluation of Their Homogeneity, Fiz. Tverd. Tela (St. Petersburg), 2000, vol. 42, no. 7, pp. 1243–1249 [Phys. Solid State (Engl. transl.), 2000, vol. 42, no. 7, pp. 1280–1286].

    Google Scholar 

  4. Gusev, A.I. and Rempel, A.A., Nestekhiometriya, besporyadok i poryadok v tverdom tele (Nonstoichiometry: Disorder and Order in Solids), Yekaterinburg: Ural Division of the Russian Academy of Sciences, 2001 [in Russian].

    Google Scholar 

  5. Gusev, A.I., Rempel, A.A., and Magerl, A.J., Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides, and Oxides, Berlin: Springer, 2001.

    Google Scholar 

  6. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, and Nanotechnologies), Moscow: Fizmatlit, 2005 [in Russian].

    Google Scholar 

  7. Dasgupta, P., On Use of Pseudo-Voigt Profiles in Diffraction Line Broadening Analyses, Fizika A (Croatia), 2000, vol. 9, no. 2, pp. 61–66.

    CAS  Google Scholar 

  8. Puerta, J. and Martin, P., Three and Four Generalized Lorentzian Approximations for the Voigt Line Shape, Appl. Opt., 1981, vol. 20, no. 22, pp. 3923–3928.

    Google Scholar 

  9. Cagliotti, G., Paoletti, A., and Ricci, F.P., Choice of Collimators for a Crystal Spectrometer for Neutron Diffraction, Nucl. Instrum. Methods, 1958, vol. 3, no. 3, pp. 223–228.

    Google Scholar 

  10. Rietveld, H.M., A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Crystallogr., 1969, vol. 2, no. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  11. Scherrer, P., Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1918, vol. 2, pp. 98–100.

    Google Scholar 

  12. Warren, B.E., Averbach, B.L., and Roberts, B.W., Atomic Size Effect in the X-Ray Scattering by Alloys, Appl. Phys., 1951, vol. 22, no. 1, pp. 1493–1496.

    Article  CAS  Google Scholar 

  13. Williamson, G.K. and Hall, W.H., X-Ray Line Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, vol. 1, no. 1, pp. 22–31.

    Article  CAS  Google Scholar 

  14. Gusev, A.I. and Rempel’, S.V., X-Ray Diffraction Study of the Nanostructure Resulting from Decomposition of (ZrC)1−x (NbC)x Solid Solutions, Neorg. Mater., 2003, vol. 39, no. 1, pp. 49–53 [Inorg. Chem. (Engl. transl.), 2003, vol. 39, no. 1, pp. 43–46].

    Article  Google Scholar 

  15. Rempel’, S.V., Gusev, A.I., and Rempel’, A.A., A Method for Determining the Particle Size in Compacted and Dispersed Nanomaterials, in Fizikokhimiya ul’tradispersnykh (nano-) sistem (Physical Chemistry of Ultradisperse (Nano-)Systems), Moscow: Moscow Institute of Engineering Physics, 2003, pp. 378–384 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.S. Kurlov, A.I. Gusev, 2007, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurlov, A.S., Gusev, A.I. Determination of the particle sizes, microstrains, and degree of inhomogeneity in nanostructured materials from X-ray diffraction data. Glass Phys Chem 33, 276–282 (2007). https://doi.org/10.1134/S1087659607030169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659607030169

Keywords

Navigation