Glass Physics and Chemistry

, Volume 32, Issue 6, pp 604–611 | Cite as

Field-assisted diffusion of potassium ions in sodium silicate glass

  • S. I. Sviridov
  • N. P. Eliseeva
Article

Abstract

The kinetics of interaction between the 20Na2O · 80SiO2 glass and the potassium nitrate melt is investigated in the presence of a dc electric field and without it. The interdiffusion coefficients and effective electrical mobilities of potassium ions, as well as the parameters of the temperature dependence of the electrical mobility, are determined. It is established that the models describing the field-assisted diffusion processes in the framework of the Nernst-Einstein equation are not applicable to analyzing the interactions responsible for the considerable changes in the chemical composition of the diffusion zone.

Keywords

Concentration Distribution Glass Physic Diffusion Zone Activation Enthalpy Alkali Cation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nikonorov, N.V. and Petrovskii, G.T., Ion-Exchanged Glasses in Integrated Optics: The Current State of Research and Prospects (A Review), Fiz. Khim. Stekla, 1999, vol. 25, no. 1, pp. 21–69 [Glass Phys. Chem., (Engl. transl.), 1999, vol. 25, no. 1, pp. 16–55].Google Scholar
  2. 2.
    Ramaswamy, R.V. and Srivastava, R., Ion-Exchanged Glass Waveguides: A Review, J. Lightwave Technol., 1988, vol. 6, no. 6, pp. 984–1002.CrossRefGoogle Scholar
  3. 3.
    Ohta, H. and Hara, M., Ion Exchange in Sheet Glass by Electrolysis, J. Ceram. Soc. Jpn., 1970, vol. 78, no. 5, pp. 158–164.Google Scholar
  4. 4.
    Peters, E. and Frischat, G.H., Farbionenaustausch an Gläsern unter Wirkung eines Elektrischen Feldes, Glastech. Ber., 1977, vol. 50, no. 4, pp. 63–67.Google Scholar
  5. 5.
    Danilkin, V.I., Kudryavtsev, L.A., and Ivanov, V.A., On the Process of Transfer of Positively Charged Ions of Potassium and Sodium in a Direct-Current Electric Field at the “Molten Salt-Alkali Glass-Vacuum” Interface, in Elektricheskie svoistva i stroenie stekla, Trudy IV Vsesoyuznogo soveshchaniya po stekloobraznomu sostoyaniyu (Proceedings of the Fourth All-Union Conference on the Vitreous State: Electrical Properties and Structure of Glasses), Moscow, 1964, pp. 68–73 [in Russian].Google Scholar
  6. 6.
    Borom, M.P., Electron-Microprobe Study of Field-Assisted Bounding of Glass to Metals, J. Am. Ceram. Soc., 1973, vol. 56, no. 5, pp. 254–257.CrossRefGoogle Scholar
  7. 7.
    Kanda, Y., Matsuda, K., Murayama, Ch., and Sugaya, J., The Mechanism of Field-Assisted Silicon-Glass Bonding, Sens. Actuators A, 1990, vols. 21–23, pp. 939–943.CrossRefGoogle Scholar
  8. 8.
    Lengyel, S., Über eine Möglichkeit zur gleichzeitigen Messung von Ionendiffusionkoeffizienten und Ionenbeweglichkeiten mittels Anwendung radioaktiver Isopote, Z. Phys. Chem., 1965, vol. 228, nos. 5–6, pp. 393–407.Google Scholar
  9. 9.
    Malkovich, R.Sh., Matematika diffuzii v poluprovodnikakh (Mathematics of the Diffusion in Semiconductors), St. Petersburg: Nauka, 1999 [in Russian].Google Scholar
  10. 10.
    Sviridov, S.I. and Eliseeva, N.P., Interaction of Glasses with Nitrate Melts in the Systems Containing Na+, K+, and Ba2+, Fiz. Khim. Stekla, 1999, vol. 25, no. 2, pp. 216–227 [Glass Phys. Chem. (Engl. transl.), 1999, vol. 25, no. 2, pp. 163–171].Google Scholar
  11. 11.
    Batchelor, S., Oven, R., and Ashworth, D.G., Characterization of Electric Field-Assisted Diffused Potassium Ion Planar Optical Waveguides, Electron. Lett., 1996, vol. 32, no. 22, pp. 2082–2083.CrossRefGoogle Scholar
  12. 12.
    Kanenko, T., Field-Assisted Diffusion Profiles of Ag+ Ions in Glass, J. Mater. Sci. Lett., 1985, vol. 4, no. 9, pp. 1071–1075.CrossRefGoogle Scholar
  13. 13.
    Abou-El-Leil, M. and Cooper A.R., Analysis of Field-Assisted Binary Ion Exchange, J. Amer. Ceram. Soc., 1979, vol. 61, nos. 7–8, pp. 390–395.CrossRefGoogle Scholar
  14. 14.
    Honkanen, S. and Tervonen, A., Experimental Analysis of Ag+-Na+ Exchange in Glasses with Ag Film Ion Sources for Planar Optical Waveguide Fabrication, J. Appl. Phys., 1988, vol. 63, no. 3, pp. 634–639.CrossRefGoogle Scholar
  15. 15.
    Albert, J. and Lit, J.W.Y., Full Modeling of Field-Assisted Ion Exchange for Graded Index Buried Channel Optical Waveguides, Appl. Opt., 1990, vol. 29, no. 18, pp. 2798–2804.CrossRefGoogle Scholar
  16. 16.
    Permyakova, T.V., Makeeva, N.M., and Zhabrev, V.A., Anodic Dissolution of Silver in Glasses, Fiz. Khim. Stekla, 1999, vol. 25, no. 6, pp. 679–683 [Glass Phys. Chem., (Engl. transl.), 1999, vol. 25, no. 6, pp. 512–515].Google Scholar
  17. 17.
    Engel, J.R. and Tomozawa, M., Nernst-Einstein Relation in Sodium Silicate Glass, J. Am. Ceram. Soc., 1975, vol. 58, nos. 5–6, pp. 183–185.CrossRefGoogle Scholar
  18. 18.
    Kahnt, H., Kaps, Ch., and Laborde, P., New Method of Measuring Diffusion Coefficient and Mobility of Radio-Tracer Ions in Glasses, in Proceedings of the XV International Congress on Glass, London, United Kingdom, 1989, London, 1989, vol. 2a, pp. 101–106.Google Scholar
  19. 19.
    Heinemann, J. and Frischat, G.H., The Sodium Transport Mechanism in Na2O-2SiO2 Glass Determined by Chemla Experiment, Phys. Chem. Glasses, 1993, vol. 34, no. 6, pp. 255–260.Google Scholar
  20. 20.
    Kahnt, H., Kaps, Ch., and Offermann, J., A New Method of Simultaneous Measurement of Tracer Diffusion Coefficient and Mobility of Alkali Ions in Glasses, Solid State Ionics, 1988, vol. 31, no. 3, pp. 215–220.CrossRefGoogle Scholar
  21. 21.
    Evstrop’ev, K.K., Diffuzionnye protsessy v stekle (Diffusion Processes in Glasses), Leningrad: Stroiizdat, 1970 [in Russian].Google Scholar
  22. 22.
    Frischat, G.H., Ionic Diffusion in Oxide Glasses, Aedermannsdorf: Trans. Tech., 1975.Google Scholar
  23. 23.
    Götz, H., Helland, G., and Schaeffer, H.A., Chemische Veränderung von Glassoberflächen durch Ionentransport im elektrishen Feld, Glastech. Ber., 1979, vol. 82, no. 5, pp. 99–104.Google Scholar
  24. 24.
    Miliou, A., Zhenguang, H., Cheng, H.C., Srivastava, R., and Ramaswamy, R.V., Fiber-Comporatible K+-Na+ Ion-Exchanged Channel Waveguides: Fabrication and Characterisation, IEEE J. Quantum Electron., 1989, vol. QE25, no. 6, pp. 1889–1897.CrossRefGoogle Scholar
  25. 25.
    Ashworth, D.G., Oven, R., and Page, M.C., The Influence of the Pseudo-Mixed-Alkali Effect on the Field-Assisted Diffusion of Silver Ions into Glass for Optical Waveguides, J. Phys. D: Appl. Phys., 1995, vol. 28, no. 4, pp. 657–664.CrossRefGoogle Scholar
  26. 26.
    Gevorkyan, S.Sh., Planar Waveguides Prepared on K8 Glass through Field-Assisted Diffusion of Copper from Evaporated Oxide Film, Fiz. Khim. Stekla, 1990, vol. 16, no. 3, pp. 489–491.Google Scholar
  27. 27.
    Kaneko, T., Dilation of Glass by Field-Assisted Ion-Exchange, J. Mater. Sci. Lett., 1986, vol. 5, no. 10, pp. 1011–1012.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. I. Sviridov
    • 1
  • N. P. Eliseeva
    • 1
  1. 1.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations