Glass Physics and Chemistry

, Volume 32, Issue 5, pp 516–523 | Cite as

The influence of irradiation on the microhardness and photoluminescence of SiO2

  • M. A. Mussaeva
  • M. U. Kalanov
  • E. M. Ibragimova
  • M. I. Muminov


The microhardness and photoluminescence spectra excited with 337-nm laser radiation in commercial SiO2 glasses (UV windows, substrates with BaTiO3 film coatings) exposed to 60Co gamma radiation and a mixed neutron flux from the reactor are investigated. It is revealed that initial samples contain nanocrystalline phases. An increase in the microhardness and the intensity of the excitonic UV luminescence due to 60Co gamma irradiation and the quenching of the photoluminescence associated with the nonbridging oxygen centers result from healing of Si-O dangling bonds and microcracks in the surface layer at the nanocrystal-glass matrix and substrate-coating interfaces. It is demonstrated that reactor irradiation leads to the phase transformation of SiO2 cristobalite into tridymite and BaO into BO2, as well as to the decomposition of BaTiO3 and BaCO3. This brings about a decrease in the microhardness and photoluminescence quenching.


Gamma Irradiation Neutron Irradiation Silica Glass Glass Matrix Cristobalite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bae, H.S., Kim, T.G., Whang, C.N., Im, S., Yun, J.S., and Song, J.H., Electroluminescence Mechanism in SiOx Layers Containing Radiative Centers, J. Appl. Phys., 2002, vol. 91, no. 7, pp. 4078–4081.CrossRefGoogle Scholar
  2. 2.
    Ahuja, R., Eriksson, O., and Johansson, B., Electronic and Optical Properties of BaTiO3 and SrTiO, J. Appl. Phys., 2001, vol. 90, no. 4, pp. 1854–18598.CrossRefGoogle Scholar
  3. 3.
    Bratus, V.Ya., Valakh, M.Ya., Vorona, I.P., Petrenko, T.T., Yukhimchuk, V.A., Hemment, P.L.F., and Komoda, T., Photoluminescence and Paramagnetic Defects in Silicon-Implanted Silicon Dioxide Layers, J. Lumin., 1999, vol. 80, pp. 269–273.CrossRefGoogle Scholar
  4. 4.
    Demidov, E.S., Latysheva, N.D., Perevashchikov, V.A., et al., Effect of Ion Irradiation on the Depth Profiles of Microdefects in Silicon, Neorgan. Mater., 2000, vol. 36, no. 5, pp. 522–525 [Inorg. Mater. (Engl. transl.), 2000, vol. 36, no. 5, pp. 422–425].Google Scholar
  5. 5.
    Wang, Chind-Wu, Chen, Shih-Fang, and Chen, Guan-Ting, Gamma-Ray-Irradiation Effects on the Leakage Current and Reliability of Sputtered TiO2 Gate Oxide in Metal Oxide Semiconductor Capacitors, J. Appl. Phys., 2002, vol. 91, no. 11, pp. 9198–9203.CrossRefGoogle Scholar
  6. 6.
    Tokuda, N., Kanda, T., Yamasaki, S., Miki, K., and Yamabe, K., Leakage Current Distribution of Cu-Contaminated Thin SiO2, Jpn. J. Appl. Phys., 2003, vol. 42, pp. L160–L162.CrossRefGoogle Scholar
  7. 7.
    Brekhovskikh, S.M., Viktorova, Yu.N., and Landa, L.M., Radiatsionnye effektv v steklakh (Radiation Effects in Glasses), Moscow: Energoizdat, 1982, Chapters 7 and 8 [in Russian].Google Scholar
  8. 8.
    Brekhovskikh, S.M. and Tyul’nin, V.A., Radiatsionnye tsentry v neorganicheskikh steklakh (Radiation-Induced Centers in Inorganic Glasses), Moscow: Energoatomizdat, 1988, pp. 26–30, 54–55, 124–132 [in Russian].Google Scholar
  9. 9.
    Kostyukov, N.S., Astapova, E.S., Muminov, M.I., et al., Mekhanicheskaya i elektricheskaya prochnost’ i izmenenie struktury pri obluchenii (Mechanical and Electrical Strength and Structural Transformations under Irradiation), Moscow: Nauka, 2003 [in Russian].Google Scholar
  10. 10.
    Derzhavin, S.N., Ivanov, A.V., Kasymova, S.S., and Milyukov, E.M., Mikrotverdost’ khrupkikh opticheskikh materialov (Microhardness of Brittle Optical Materials), Tashkent: FAN, 1983 [in Russian].Google Scholar
  11. 11.
    Lell, E., Kreidel, N.J., and Hensler, J.R., Radiation Effects in Quartz, Silica, and Glasses, in Progress in Ceramics Science, Burke, J.E., Ed., New York: Pergamon, 1966, vol. 4.Google Scholar
  12. 12.
    Clinard, F.W. and Hobbs, L.W., Radiation Effects in Non-Metals, in Physics of Radiation Effects in Crystals, Jahnson, R.A. and Orlov, A.N., Eds., Amsterdam: Elsevier, 1986, Chapter 7, p. 431.Google Scholar
  13. 13.
    Mussaeva, M.A. and Ibragimova, E.M., Absorption and Gamma-Luminescence Spectra of Irradiated SiO2 Crystals and Glasses with a Coating, Uzb. Fiz. Zh., 2002, vol. 4, pp. 340–345.Google Scholar
  14. 14.
    Pichugin, I.G. and Tairov, Yu.M., Tekhnologiya poluprovodnikovykh priborov (Semiconductor Device Technology), Moscow: Vysshaya Shkola, 1984, Section 8.3, pp. 260–261 [in Russian].Google Scholar
  15. 15.
    Biryukov, D.Yu., Zatsepin, A.F., and Kortov, V.S., Influence of Point Defects in a Surface Layer on the Strength Characteristics of Glasses, Fiz. Khim. Stekla, 2001, vol. 27, no. 4, pp. 503–512 [Glass Phys. Chem. (Engl. transl.), 2001, vol. 27, no. 4, pp. 337–352].Google Scholar
  16. 16.
    Zatsepin, A.F., Biryukov, D.Yu., Kortov, V.S., and Cholakh, S.O., Nonradiative Relaxation of Photoexcited O10 Centers in Glassy SiO2, Fiz. Tverd. Tela, 2002, vol. 44, no. 9, pp. 1596–1600 [Phys. Solid State (Engl. transl.), 2002, vol. 44, no. 9, pp. 1671–1675].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. A. Mussaeva
    • 1
  • M. U. Kalanov
    • 1
  • E. M. Ibragimova
    • 1
  • M. I. Muminov
    • 1
  1. 1.Institute of Nuclear PhysicsAcademy of Sciences of UzbekistanTashkentUzbekistan

Personalised recommendations