Glass Physics and Chemistry

, Volume 32, Issue 3, pp 296–303 | Cite as

Raman and dielectric spectra of the glass and single crystal of Li2Ge7O15 in the frequency range 3–1000 cm−1: I. Comparison of the structures of the crystal and initial glass

  • V. N. Sigaev
  • S. V. Lotarev
  • E. N. Smelyanskaya
  • P. D. Sarkisov
  • A. A. Volkov
  • G. A. Komandin
  • V. V. Koltashev
  • V. G. Plotinichenko
Article

Abstract

The Raman and dielectric spectra of vitreous and single-crystal lithium heptagermanates are measured over a wide range of frequencies from 3 to 1000 cm−1. It is revealed that the spectra of the Li2O · 7GeO2 glass and the Li2Ge7O15 crystal are similar to each other because the intense but broad bands in the spectrum of the glass correspond to the most intense groups of bands in the spectrum of the crystal. The similarity is observed over the entire frequency range, including the range of the boson peak. This indicates that the shortrange orders in the structures of the glass and the crystal are similar to each other and that the medium-range order in the glass resembles the main structural motif of the crystal.

Keywords

Raman Spectrum Glass Physic Borate Glass Dielectric Spectrum Entire Frequency Range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sigaev, V.N., Stefanovich, S.Yu., Champagnon, B., et al., Amorphous Nanostructuring in Potassium Niobium Silicate Glasses by SANS and SHG: A New Mechanism for Second-Order Optical Non-Linearity of Glasses, J. Non-Cryst. Solids, 2002, vol. 306, pp. 238–248.CrossRefGoogle Scholar
  2. 2.
    Sigaev, V.N., Akimova, O.V., Sarkisov, P.D., et al., On the Nature of Optical Nonlinearity in Oxide Glasses from Small-Angle Neutron Scattering Data, Poverkhnost, 2002, no. 9, pp. 95–100.Google Scholar
  3. 3.
    Lipovskii, A.A., Tagantsev, D.K., Tatarintsev, B.V., and Vetrov, A.A., The Origin of Electrooptical Sensitivity of Glassy Materials: Crystal Motifs in Glasses, J. Non-Cryst. Solids, 2003, vol. 318, pp. 268–283.CrossRefGoogle Scholar
  4. 4.
    Lipovskii, A.A., Tagantsev, D.K., Tatarintsev, B.V., Vetrov, A.A., and Yanush, O.V., Raman Spectroscopy and the Origin of Electrooptical Kerr Phenomenon in Niobium Alkali-Silicate Glasses, Opt. Mater., 2003, vol. 21, pp. 749–757.CrossRefGoogle Scholar
  5. 5.
    Sarkisov, P.D., Sigaev, V.N., Smelyanskaya, E.N., Volkov, A.A., Komandin, G.A., Abasheva, E.R., and Sharif, D.I., On the Polar Structural Fragments in Glasses from Dielectric Spectroscopic Data, Fiz. Khim. Stekla, 2003, vol. 29, no. 5, pp. 597–607 [Glass Phys. Chem. (Engl. transl.), 2003, vol. 29, no. 5, pp. 431–437].Google Scholar
  6. 6.
    Hägg, G., The Vitreous State, J. Chem. Phys., 1935, vol. 3, pp. 42–49.CrossRefGoogle Scholar
  7. 7.
    Porai-Koshits, E.A., On the Structure of Composite Glasses, Dokl. Akad. Nauk SSSR, 1943, vol. 50, no. 9, pp. 394–397.Google Scholar
  8. 8.
    Porai-Koshits, E.A., A Study of Vitreous Materials by X-ray Techniques: Possibilities and Results, in Stroenie stekla. Trudy soveshchaniya po stroeniyu stekla (Glass Structure, Proceedings of the Conference on the Glass Structure), Moscow: Akad. Nauk SSSR, 1955, pp. 30–43.Google Scholar
  9. 9.
    Porai-Koshits, E.A., Crystal Chemical Aspects of the Structure of Inorganic Glasses, in Trudy vsesoyuznogo soveshchaniya “Stekloobraznoe sostoyanie” (Proceedings of the All-Union Conference “The Vitreous State”), Moscow: Nauka, 1965, pp. 7–13.Google Scholar
  10. 10.
    Krogh-Moe, J., Interpretation of the IR Spectra of Boron Oxide and Alkali Borate Glasses, Phys. Chem. Glasses, 1965, vol. 6, pp. 46–54.Google Scholar
  11. 11.
    Gaskell, P.H., Low-Q Features in Diffraction Data for Borate Glasses and Crystals—An Examination of Similarities in Medium-Range Structures, in Proceedings of the II International Conference on Borate Glasses, Crystals, and Melts, Wright, A.C., Feller, S.A., and Hannon, A.C., Eds., Sheffield: Soc. Glass Technol., 1997, pp. 71–79.Google Scholar
  12. 12.
    Sinclair, R.N, Wright, A.C., Wanless, A.J., et al., Inelastic Neutron Scattering Techniques for Studying Superstructural Units in Borate Glasses, in Proceedings of the II International Conference on Borate Glasses, Crystals, and Melts, Wright, A.C., Feller, S.A., and Hannon, A.C., Eds., Sheffield: Soc. Glass Technol., 1997, pp. 140–147.Google Scholar
  13. 13.
    Parshin, M.A., Laermans, C., Parshin, D.A., and Melehin, V.G., Boson Peak in Neutron-Irradiated Quartz Crystal, Physica B (Amsterdam), 2002, vols. 316–317, pp. 549–551.Google Scholar
  14. 14.
    Das Mulmi, D., Sekiya, T., Kamiya, N., Kurita, S., Murakami, Yu., and Kodaira, T., Optical and Electric Properties of Nb-Doped Anatase TiO2 Single Crystal, J. Phys. Chem. Solids, 2004, vol. 65, no. 6, pp. 1181–1185.CrossRefGoogle Scholar
  15. 15.
    Le Parc, R., Champagnon, B., Dianoux, J., Jarry, P., and Martinez, V., Anorthite and CaAl2Si2O8 Glass: Low Frequency Raman Spectroscopy and Neutron Scattering, J. Non-Cryst. Solids, 2003, vol. 323, pp. 155–161.CrossRefGoogle Scholar
  16. 16.
    Freitas, J.A., Shanenbrook, B.V., and Strom, U., Low-Frequency Raman Scattering of As2SxSe3−x, J. Non-Cryst. Solids, 1985, vols. 77–78, no. 2, pp. 1125–1128.CrossRefGoogle Scholar
  17. 17.
    Tu, J., FitzGerald, S.A., Campbell, J.A., and Sievers, A.J., Glass-Like Properties Observed in Low-Frequency Raman Scattering of Mixed Fluorite Crystals, J. Non-Cryst. Solids, 1996, vol. 203, pp. 153–158.CrossRefGoogle Scholar
  18. 18.
    Torgashev, V., Yuzyuk, Ju., Latush, L., et al., Infrared and Raman Spectroscopy of Li2Ge7O15 Single Crystals: Spectra of the Paraelectric and Aristotype Phases, J. Phys.: Condens. Mater, 1995, vol. 7, pp. 5681–5700.CrossRefGoogle Scholar
  19. 19.
    Kadlec, F., Petzelt, J., Železný, V., and Volkov, A.A., Disappearance of the Infrared Soft Mode in the Weak Ferroelectric Li2Ge7O15, Solid State Commun., 1995, vol. 94, no. 9, pp. 725–729.CrossRefGoogle Scholar
  20. 20.
    Golubkov, V.V., Polyakova, I.G., and Shakhmatkin, B.A., Structure and Structural Transformations in Lithium Germanate Glasses, Fiz. Khim. Stekla, 1990, vol. 16, no. 4, pp. 518–528.Google Scholar
  21. 21.
    Cox, A.D. and McMillian, P.W., An EXAFS Study of the Structure of Lithium Germanate Glasses, J. Non-Cryst. Solids, 1981, vol. 44, pp. 257–264.CrossRefGoogle Scholar
  22. 22.
    Marotta, A., Pernice, P., Palumbo, P., Catauro, M., and Aronne, A., Crystallizing Phases and Kinetics of Crystal Growth in Lithium Germanate Glasses, in Proceedings of the XVI International Congress on Glass, Madrid, 1992, vol. 2, pp. 229–234.Google Scholar
  23. 23.
    Pernice, P., Aronne, A., and Marotta, A., The Non-Isothermal Devitrification of Lithium Heptagermanate Glass, Thermochim. Acta, 1992, vol. 196, pp. 1–6.CrossRefGoogle Scholar
  24. 24.
    Pernice, P., Aronne, A., Marotta, A., and Catauro, M., The Non-Isothermal Devitrification of Lithium Germanate Glasses, J. Therm. Anal., 1993, vol. 40, pp. 181–188.Google Scholar
  25. 25.
    Aronne, A., Pernice, P., and Catauro, M., FT Infrared Spectroscopy of the Devitrification of Lithium Germanate Glasses, Phys. Chem. Glasses, 1996, vol. 37, no. 4, pp. 134–137.Google Scholar
  26. 26.
    Sakka, S. and Kamiya, K., Structure of Alkali Germanate Glasses Studied by Spectroscopic Techniques, J. Non-Cryst. Solids, 1982, vol. 49, pp. 103–116.CrossRefGoogle Scholar
  27. 27.
    Verweij, H. and Buster, J.H.J.M., The Structure of Lithium, Sodium, and Potassium Germanate Glasses, Studied by Raman Scattering, J. Non-Cryst. Solids, 1979, vol. 34, pp. 81–99.CrossRefGoogle Scholar
  28. 28.
    Furukawa, T. and White, W.B., Raman Spectroscopic Investigation of the Structure and Crystallization of Binary Alkali Germanate Glasses, J. Mater. Sci., 1980, vol. 15, pp. 1648–1662.CrossRefGoogle Scholar
  29. 29.
    Kozlov, G.V. and Volkov, A.A., Coherent Source Submillimeter Wave Spectroscopy, Topics Appl. Phys., 1998, vol. 74, pp. 51–109.CrossRefGoogle Scholar
  30. 30.
    Komandin, G.A., Survey Spectra of Doped Dielectrics in the Submillimeter and Infrared Wavelength Ranges, Abstract of Cand. Sci. Dissertation, Moscow: Inst. of Gen. Phys., Russ. Acad. of Sci., 1998, p. 20.Google Scholar
  31. 31.
    Efimov, A.M., Quantitative IR Spectroscopy: Applications to Studying Glass Structure and Properties, J. Non-Cryst. Solids, 1996, vol. 203, pp. 1–11.CrossRefGoogle Scholar
  32. 32.
    Smelyanskaya, E.N., Sigaev, V.N., Volkov, A.A., Voitsekhovskii, V.V., Komandin, G.A., Shigorin, V.D., and Kaminskii, A.A., Dielectric Absorption of Single-Crystal, Glass-Ceramic, and Vitreous LaBGeO5 in the Frequency Range 3–1500 cm−1, Fiz. Khim. Stekla, 1997, vol. 23, no. 4, pp. 436–448 [Glass Phys. Chem. (Engl. transl.), 1997, vol. 23, no. 4, pp. 303–311].Google Scholar
  33. 33.
    Sigaev, V.N., Gregora, I., Pernice, P., et al., Structure of Lead Germanate Glasses by Raman Spectroscopy, J. Non-Cryst. Solids, 2001, vol. 279, pp. 136–144.CrossRefGoogle Scholar
  34. 34.
    Smelyanskaya, E.N., Sarkisov, P.D., Sigaev, V.N., Kozlov, G.V., Volkov, A.A., Voitsekhovskii, V.V., and Komandin, G.A., Low-Frequency Vibrational Spectra of the Vitreous and Crystalline Germanium Dioxide, Fiz. Khim. Stekla, 1995, vol. 21, no. 5, pp. 437–446 [Glass Phys. Chem. (Engl. transl.), 1995, vol. 21, no. 5, pp. 317–322].Google Scholar
  35. 35.
    Price, D.L., Ellison, A.J.G., Saboungi, M., et al., Short-, Intermediate-, and Extended-Range Order in Rubidium Germanate Glasses, Phys. Rev. B: Condens. Matter, 1997, vol. 55, no. 17, pp. 11230–11235.Google Scholar
  36. 36.
    Hoppe, U., Kranold, R., Weber, H.-J., and Hannon, A.C., The Change of the Ge-O Coordination Number in Potassium Germanate Glasses Probed by Neutron Diffraction with High Real-Space Resolution, J. Non-Cryst. Solids, 1999, vol. 248, no. 1, pp. 1–10.CrossRefGoogle Scholar
  37. 37.
    Tikhomirov, V.K., Santos, L.F., Almeida, R.M., et al., On the Origin of the Low Energy Raman Scattering in As2S3 Glass, in Proceedings of the XII International Symposium “Non-Oxide Glasses and Advanced Materials”, Plorianopolis, 2000, pp. 401–405.Google Scholar
  38. 38.
    Sigaev, V.N., Smelyanskaya, E.N., Plotnichenko, V.G., et al., Low-Frequency Band at 50 cm−1 in the Raman Spectrum of Cristobalite: Identification of Similar Structural Motifs in Glasses and Crystals of Similar Composition, J. Non-Cryst. Solids, 1999, vol. 248, pp. 141–146.CrossRefGoogle Scholar
  39. 39.
    Denisov, Yu.V. and Zubovich, A.A., Density of Vibrational States in the Medium-Range Order Structure of Glasses, Fiz. Khim. Stekla, 1999, vol. 25, no. 4, pp. 423–433 [Glass Phys. Chem. (Engl. transl.), 1999, vol. 25, no. 4, pp. 320–327].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • V. N. Sigaev
    • 1
  • S. V. Lotarev
    • 1
  • E. N. Smelyanskaya
    • 1
  • P. D. Sarkisov
    • 1
  • A. A. Volkov
    • 2
  • G. A. Komandin
    • 2
  • V. V. Koltashev
    • 3
  • V. G. Plotinichenko
    • 3
  1. 1.Mendeleev University of Chemical TechnologyMoscowRussia
  2. 2.Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Research Center of Fiber Optics, Institute of General PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations