Prenucleus Clusters and Nonclassical Crystal Formation

Abstract—The features of nonclassical nucleation of crystals, which are related to the formation of stable prenucleus clusters of an intermediate phase in a crystal-forming medium, are considered. These clusters (quatarons) are primary protomineral particles, whose crystallization is among the possible scenarios of their evolution. The formation conditions and typical properties of quatarons are discussed. The importance of experiments on direct observation of prenucleus clusters and other objects of protomineral world is shown.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.


  1. 1

    Askhabov, A.M. Cluster (quatarone) self-organization of matter at the nanoscale level and the formation of crystalline and non-crystalline materials. Zap. Ross. Mineral. O-va, 2004, vol. 133, no. 4, pp. 108–123.

    Google Scholar 

  2. 2

    Askhabov, A.M., Aggregation of quatarons as a formation mechanism of amorphous spherical particles, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 92–94.

    Google Scholar 

  3. 3

    Askhabov, A.M. Quatarone model of the formation of fullerenes, Fiz. Tverd. Tela, 2005, vol. 47, no. 6, pp. 1147–1150.

    Google Scholar 

  4. 4

    Askhabov, A.M., Quataron concept: main ideas, some applications, Komi Nauchn. Ts. Ur. Otd. Ross. Akad. Nauk, 2011, no. 3 (7), pp. 70–77.

  5. 5

    Askhabov, A.M., Quataron nature of the nonclassical mechanism of crystal nucleation and growth, Vestn. Inst. Geol., Komi Nauchn. Ts. Ur. Otd. Ross. Akad. Nauk, 2015, no. 4, pp. 3–7.

  6. 6

    Askhabov, A.M., Micro- and nanoblock crystal growth, Vestn. Inst. Geol., Komi Nauchn. Ts. Ur. Otd. Ross. Akad. Nauk, 2016, no. 5 (257), pp. 13–18.

  7. 7

    Askhabov, A.M., Quataron models of nucleation and growth of crystals. Zap. Ross. Mineral. O-va, 2016, no. 5, pp. 17–24.

  8. 8

    Askhabov, A.M., A new stage of the mineralogical invasion of the “world of neglected values”: the discovery of the protomineral world. Proc. Jubilee Congr. Russian Miner. Society “200th Anniversary of the Russian Mineralogical Society, St. Petersburg: LEMA, 2017, vol. 2, pp. 3–5.

  9. 9

    Askhabov, A.M., Mineralogy in the “world of neglected values,” Sovremennye problem teoreticheskoi, eksperimental’noi i prikladnoi mineralogii (Yushkinskie chteniya-2018). Mat. Mineral. Seminara s mezhdunarodnym uchastiem (Modern Problems of Theoretical, Experimental and Applied Mineralogy (Yushkin Readings—2018). Seminar with International Participation), Syktyvkar: IG Komi Nauchn. Ts. Ur. Otd. Ross. Akad. Nauk, 2018, pp. 7–8.

  10. 10

    Askhabov, A.M., New cluster concept of crystal formation, Crystallogr. Rep., 2018. V. 63, no. 7. P. 1195–1199.

    Article  Google Scholar 

  11. 11

    Askhabov, A.M. and Ryazanov, M.A., “Latent” Phase Clusters—Kvatarons—and Nucleation, Dokl Phys. Chem., 1998, vol. 362, nos. 4–6, pp. 335–337.

  12. 12

    Bergström, L., Sturm, E.V., Salazar-Alvarez, G., Mesocrystals in biominerals and colloidal arrays, Ace. Chem. Res., 2015, vol. 48, pp. 1391–1402.

    Article  Google Scholar 

  13. 13

    Cerreta, M.K. and Berglund, K.A., The structure of aqueous solutions of some dihidrogen orthophosphates by laser Raman spectroscopy, J. Crystal Growth, 1987, vol. 84, pp. 577–588.

    Article  Google Scholar 

  14. 14

    Cölfen, H. and Antonietti, M., Mesocrystals and Nonclassical Crystallization, Chichester: Wiley, 2008.

    Google Scholar 

  15. 15

    Demichelis, R., Raiteri, P., Gale, Y.D., Quigley, D., and Gebauer, D., Stable prenucleation mineral clusters are liquid-like ionic polymers, Nature Commun., 2011, vol. 2, pp. 590.

    Article  Google Scholar 

  16. 16

    Dyakova, Yu.A., Ilina, K.B., Konarev, P.V. et al., Small-angle X-ray scattering study of conditions for the formation of growth units of protein crystals in lysozyme solutions, Cryst. Rept., 2017, vol. 62, no. 3, pp. 364–369.

    Article  Google Scholar 

  17. 17

    Fedorov, P.P., Ivanov, V.K., and Osiko, V.V., Basic features and crystal-growth scenarios based on the mechanism of oriented attachment growth of nanoparticles, Dokl. Phys., 2015, vol. 60, no. 11, pp. 483–485.

    Article  Google Scholar 

  18. 18

    Galiulin, R.V., Kristallograficheskaya geometriya (Crystallographic Geometry), Moscow: Nauka, 1984.

  19. 19

    Gebauer, D. and Cölfen, H., Prenucleation clusters and non-classical nucleation, Nano Today, 2011, no. 6,pp. 564–584.

  20. 20

    Gebauer, D., Völkel, A., and Cölfen, H., Stable prenucleation calcium carbonate clusters. Science, 2008, vol. 322, pp. 1819–1822.

    Article  Google Scholar 

  21. 21

    Greer Heather F., Yu Fend Jiao, and Zhou Wu Zong, Early stages of non-classic crystal growth, Sci. China. Chemistry, 2011, vol. 54, no. 12, pp. 1867–1876.

    Article  Google Scholar 

  22. 22

    Grigoriev, D.P., Ontogeniya mineralov (Ontogeny of Minerals), Lviv: Lviv University, 1961.

  23. 23

    Grizdale, R.O., Crystal growth from molecular complexes, Teoriya i praktika vyrashchivaniya kristallov (Theory and Practice of Growing Crystals), Moscow: Metallurgiya, 1968, pp. 176–190.

    Google Scholar 

  24. 24

    Ilyushin, G.D., Modelirovanie protsessov samoorganizatsii v kristalloobrazuyushchikh sistemakh (Simulation of Self-Organization Processes in Crystal-Forming Systems), Moscow: Editorial URSS, 2003.

  25. 25

    Ilyushin, G.D. and Blatov, V.A., Symmetry and topological code of cluster self-assembly of frame mt-structures of AlPO4(H2O)2 (metavariscite and variscite) aluminophosphates and Al2(PO4)2(H2O)3 (APC), Cryst. Rep. 2017. V. 62, no. 2, pp. 174–184.

    Article  Google Scholar 

  26. 26

    Kashchiev, D., Nucleation: Basic Theory with Applications, Oxford: Butterworth-Heinemann, 2000.

    Google Scholar 

  27. 27

    Kovalchuk M.V., Blagov A.E., Dyakova Y.A. et al. Investigation of the initial crystallization stage in lysozyme solutions by small-angle x-ray scattering, Cryst. Growth Des., 2016, vol. 16, no. 4, pp. 1792–1797.

    Article  Google Scholar 

  28. 28

    Kovalchuk, M.V., Alekseeva, O.A., Blagov, A.E., Ilyushin, G.D., Ilina, K.B., Konarev, P.V., Lomonov, V.A., Pisarevsky, Yu.V., and Peters, G.S., Investigation of the structure of crystal-forming solutions of potassium dihydrophosphate K (H2PO4) (KDP type) on the basis of modeling cluster precursors and according to small-angle X-ray scattering data, Cryst. Rept., 2019, vol. 64, no. 1, pp. 6–10.

    Article  Google Scholar 

  29. 29

    Krivovichev, S.V., Theory of regular systems of points and partitions of space. On the R-properties of regular systems of points, Cryst. Rept., 1999. V. 44, no. 2. P. 165–171.

    Google Scholar 

  30. 30

    Krivovichev, S.V., Gurzhiy, V.V., Tananaev, I.G., and Myasoedov, B.F., Microscopic model of crystallogenesis from aqueous solutions of uranyl selenite, Zap. Ross. Mineral. O-va, Spec. Issue “Crystallogenesis and Mineralogy”, 2007, pp. 91–114.

  31. 31

    Mutaftschiev, B., Nucleation. Handbook of Crystal Growth, Hurle, D. T. J., Ed., Amsterdam: Elsevier, 1993.

    Google Scholar 

  32. 32

    New Perspectives on Mineral Nucleation and Growth. From Solution Precursors to Solid Materials, Alexander, E.S. Driessche, V., Kellermeier, M., Benning, L.G., Gebauer, D., Eds., Springer, 2017.

    Google Scholar 

  33. 33

    Ostwald, W., Die Welt der vernachlässigten Dimensionen, Dresden and Leipzig: Theodor Steinkopff, 1927.

    Google Scholar 

  34. 34

    Pouget, E.M., Bomans, P.H.H., Dey, A., et al., The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM, Science, 2010, vol. 323, pp. 1455–1458.

    Article  Google Scholar 

  35. 35

    Reiss, H., Frisch, H., Hefland, E., Lebowitz, L., Aspects of the statistical thermodynamic of read fluids, J. Chem. Phys., 1960, vol. 32, no. 1, pp. 119–124.

    Article  Google Scholar 

  36. 36

    Rusli, T.T., Frisch, H.L., Hefland, E., Lebowitz, J.L., Raman spectroscopic study of NaNO3 solution system – solution clustering in supersaturated solution, J. Crystal Growth, 1989, vol. 97, pp. 345–351.

    Article  Google Scholar 

  37. 37

    Sheftal, N.N., On the issue of real crystal formation, Rost kristallov. Doklady na pervom soveshchenii po rostu kristallov (Crystal Growth. Reports at the First Meeting on the Growth of Crystals), Moscow: USSR Acad. Sci, 1957. P. 5–31.

  38. 38

    Stransky I.N., Kaishev R. Theory of crystal growth and the formation of crystalline nuclei, Usp. Fiz. Nauk., 1939, vol. 21, no. 4, pp. 408–465.

    Article  Google Scholar 

  39. 39

    Treivus, E.B., Thermodynamics of homogeneous nucleation of crystals. Cryst. Rept., 2002, vol. 47, no. 6, pp. 1072–1076.

    Article  Google Scholar 

  40. 40

    Tsvetkov E.G. and Kidyarov, B.I., Nanoscale crystallogenesis stages from the liquid phase, Zap. Ross. Mineral. O-va, Spec. issue “Crystallogenesis and mineralogy”, 2007, pp. 66–76.

  41. 41

    Vekilov, P.G., Dense liquid precursor for the nucleation of ordered solid phases from solution, Cryst. Growth Des., 2004, vol. 4, pp. 671–685.

    Article  Google Scholar 

  42. 42

    Vekilov, P.G., The two-step mechanism of nucleation of crystals in solution, Nanoscale, 2010, vol. 2, pp. 2346–2357.

    Article  Google Scholar 

  43. 43

    Zhou, W.Z. Reversed crystal growth: Implications for crystal engineering, Adv. Mother., 2010, vol. 22, pp. 3086–3092.

    Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research (project no. 19-05-00460-a) and the Program of the Complex Studies of the Urals Branch, Russian Academy of Sciences (project no. 18-5-5-44).

Author information



Corresponding author

Correspondence to A. M. Askhabov.

Additional information

Translated by I. Melekestseva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Askhabov, A.M. Prenucleus Clusters and Nonclassical Crystal Formation. Geol. Ore Deposits 62, 683–689 (2020).

Download citation


  • prenucleation clusters
  • quatarons
  • crystal formation