The Mineral Composition of Paleoproterozoic Metamorphosed Massive Sulfide Ores in the Kola Region (A Case Study of the Bragino Ore Occurrence, Southern Pechenga)


Many massive sulfide ore occurrences and deposits in the Kola region are located within the Paleoproterozoic Pechenga–Imandra–Varzuga rift belt (2.5–1.7 Ga). They are hosted by volcanosedimentary complexes of the South Pechenga (Bragino ore occurrence) and western Imandra–Varzuga structural zones (Pirrotinovoe Ushchel’e deposit, Tahtarvumchorr ore occurrence, etc.). The age of the massive sulfide ore was estimated at ca. 1.9 Ga. The ores and their host complexes underwent amphibolite-facies metamorphism, which accounts for their specific mineral composition. The types of ores in the Bragino ore occurrence are discussed, the mineral assemblages are listed, and the major ore minerals, that is, pyrrhotite, pyrite, sphalerite, marcasite, etc., are characterized.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.


  1. 1

    Akhmedov, A.M., Voronyaeva, L.V., Pavlov, V.A., et al., The gold content of the South Pechenga structural zone (Kola Peninsula): types of manifestations and prospects for identifying industrial gold contents, Regional Geol. Metallogen., 2004, no. 20, pp. 143–165.

  2. 2

    Allen, R.L., Lunstrom, I., Ripa, M., Simeonov, A., and Christofferson, H., Facies analysis of of a 1.9 Ga, contintental margin, back-arc, felsic caldera province with diverse Zn–Pb–Ag–(Cu–Au) sulfide and Fe oxide deposits, Bergslagen Region, Sweden, Econ. Geol., 1996, vol. 91, pp. 979–1008.

    Article  Google Scholar 

  3. 3

    Balashov, Y.A., Paleoproterozoic geochronology of the Pechenga–Varzuga structure, Kola Peninsula, Petrology, 1996, vol. 4, no. 1, pp. 1–22.

    Google Scholar 

  4. 4

    Bezmen, N.I., Tikhomirova, V.I., and Kosogova, V.P., Pyrite-pyrrhotite geothermometer: distribution of nickel and cobalt, Geokhimiya, 1975, no. 5, pp. 700–714.

  5. 5

    Craig, J.R. and Vokes, F.M., The metamorphism of pyrite and pyritic ores: an overview, Mineral. Mag., 1993, vol. 57, pp. 3–18.

    Article  Google Scholar 

  6. 6

    Deb, M., Lithogeochemistry of rocks around Rampura Agucha massive zinc sulfide ore-body, NW India - implications for the evolution of a Proterozoic “Aulacogen”, In: Metallogeny Related to Tectonics of the Proterozoic Mobile Belts, Sarkar, S.C., Rotterdam: Balkhema, 1992, pp. 1–35.

  7. 7

    Deb, M., Thorpe, R.L., Cumming, G.L., and Wagner, P.A., Age, source and stratigraphic implications of Pb isotope data for conformable, sediment-hosted, base metal deposits in the Proterozoic Aravalli-Delhi orogenic belt, northwestern India, Precambrian Res., 1989, vol. 43, pp. 1–22.

    Article  Google Scholar 

  8. 8

    Dergachev, A.L., Eremin, N.I., and Sergeeva, N.Ye., Ophiolite-hosted volcanogenic massive sulfide deposits, Vestn. Mosk. Gos.. Univ., Ser. 4. Geol., 2010, no. 5, pp. 3–11.

  9. 9

    Finch, E.G. and Tomkins, A.G., Pyrite-pyrhotite stability in a metamorphic aureole: implications for orogenic gold genesis, Econ. Geol., 2017, vol. 112, pp. 661–674.

    Article  Google Scholar 

  10. 10

    Gandhi, S.M., Paliwal, H.V., and Bhatnagar, S.N., Geology and ore reserve estimates of Rampura Agucha lead zinc deposit, Bhilwara District, J. Geol. Soc. India, 1984, vol. 25, pp. 689–705.

    Google Scholar 

  11. 11

    Höller, W. and Stumpfl, E.F., Cr–V oxides from the Rampura Agucha Pb–Zn–(Ag) deposit, Rajasthan, India, Can. Mineral., 1995, vol. 33, pp. 745–752.

    Google Scholar 

  12. 12

    Höller, W. and Gandhi, S.M., Origin of tourmaline and oxide minerals from the metamorphosed Rampura Agucha Zn–Pb–(Ag) deposit, Rajasthan, India, Mineral. Petrol., 1997, vol. 60, pp. 99–110.

    Article  Google Scholar 

  13. 13

    Karpov, S.M., Voloshin, A.V., Savchenko, Ye.E., and Selivanova, E.A., Vanadium-bearing minerals in ores of the massive sulfide deposite Pyrrhotite Gorge (Khibiny region), Zap. Ross. Mineral. O-va, 2013, no. 3, pp. 83–99.

  14. 14

    Kompanchenko, A.A., Voloshin, A.V., Bazai, A.V., and Polekhovsky, Yu.S., Evolution of chromium-vanadium mineralization in massive sulfide ores at the Bragino occurrence of South Pechenga structure zone (Kola Region) by example of spinel group minerals, Zap. Ross. Mineral. O-va, 2017a, no. 5, pp. 44–58.

  15. 15

    Kompanchenko, A.A., Voloshin, A.V., and Sidorov, M.Yu., Minerals of Fe in the oxidation zone of the massive sulfide ore in the South Pechenga structure zone, Kola Region: identification by the Raman spectroscopy, Vestn. Murmansk. Gos. Tekhn. Univ., 2017b, vol. 20, no. 1, pp. 95–103.

  16. 16

    Kompanchenko, A.A., Voloshin, A.V., and Balagansky, V.V., Vanadium mineralization in the Kola Region, Fennoscandian Shield, Minerals, 2018, vol. 8, p. 474.

    Article  Google Scholar 

  17. 17

    Long, J.V.P., Vourelainen, Y., and Kuovo, O., Karelianite, a new vanadium mineral. Am. Mineral., 1963, vol. 48, pp. 33–41.

    Google Scholar 

  18. 18

    Melezhik, V.A. and Sturt, B.A., General geology and evolutionary history of the early Proterozoic Polmak–Pasvik–Pechenga–Imandra/Varzuga–Ust’Ponoy Greenstone Belt in the north-eastern Baltic Shield, Earth Sci. Rev., 1994, vol. 36, pp. 205–241.

    Article  Google Scholar 

  19. 19

    Mints, M.V., Dokukina, K.A., Konilov, A.N., Philippova, I.B., Zlobin, V.L., Babayants, P.S., Belousova, E.A., Blokh, V.I., Bogina, M.M., Bush, D.A., et al., East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure, Geol. Soc. Amer. Spec. Paper., 2015, vol. 510.

  20. 20

    Mitrofanov, F.P., Balashov, Y.A., and Balagansky, V.V., New geochronological data on lower Precambrian complexes of the Kola Peninsula, Correlation of Lower Precambrian Formations of the Karelia–Kola Region, USSR and Finland, Apatity: KSC RA, pp. 12–16.

  21. 21

    Peacock, S.M., The systematic of Sulfide Mineralogy in the Regionally Metamorphosed Ammonoosuc Volcanic, Diss. Master Sci. Earth Planet. Sci., 1981.

  22. 22

    Peltola, E., Origin of Precambrian copper sulfides of the Outokumpu Disctrict, Finland. Econ. Geol., 1978, vol. 73, pp. 461–477.

    Article  Google Scholar 

  23. 23

    Peltonen, P., Ophiolites. In: Precambrian Geology of Finland—Key to the Evolution of the Fennoscandian Shield, Lehtinen, M., Nurmi, P.A. Ramo, O.T., Eds., Amsterdam: Elsevier, 2005, pp. 237–277.

  24. 24

    Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitsky, V.A., Ed., St. Petersburg: Nauka, 2005.

    Google Scholar 

  25. 25

    Reading the Archive of Earth’s Oxygenation. Vol. 1. The Palaeoproterozoic of Fennoscandia as context for the Fennoscandian Arctic Russia—drilling early Earth project, Melezhik, V.A., Prave, A.R., Hanski, E.J., Fallick, A.E., Lepland, A., Kump, L.R., and Srauss, H., Eds., Heidelberg: Springer, 2013.

  26. 26

    Rauhamӓki, E., Mӓkelӓ, T., and Isomӓki, O.-P., Geology of the Vihanti mine. In: Precambrian ores of Finland. Proc. 26th Int. Geol. Congress. Guide to Excursions 078 A + C. Part 2. Finland, 1980, vol. 2, pp. 14–24.

  27. 27

    Rouhunkoski, P., On the geology and geochemistry of the Vihanti zinc ore deposit, Finland, Bull. Comm. Geol. Finland, 1968.

  28. 28

    Rybakov, S.I., Kolchedannoe rudoobrazovanie v rannem dokembrii Baltiiskogo shchita (Massive Sulfide Ore Generation in Early Precambrian of the Baltic Shield), Leningrad: Nauka, 1987.

  29. 29

    Scott, S.D., Chemical behavior of sphalerite and arsenopyrite in hydrothermal and metamorphic environments, Mineral. Mag., 1983, vol. 47, pp. 427–435.

    Article  Google Scholar 

  30. 30

    Sergeeva, N.E., Eremin, N.I., and Dergachev, A.L., Vanadium mineralization in ore of the Vihanti massive sulfide base-metal deposit, Finland, Dokl. Earth Sci., 2011, vol. 436, pp. 210–212.

    Article  Google Scholar 

  31. 31

    Skuf’in, P.K. and Theart, H.F.J., Geochemical and tectono-magmatic evolution of the volcano-sedimentary rocks of Pechenga and other greenstone fragments within the Kola Greenstone Belt, Russia, Precambrian Res, 2005, vol. 141, pp. 1–48.

    Article  Google Scholar 

  32. 32

    Skuf’in, P.K., Elizarov, D.V., and Zharkov, V.A., Geological and geochemical pecularities of volcanic of the the South Pechenga structural zone, Vestn. Murmansk. Gos. Tekhn. Univ., 2009, vol. 12, no. 3, pp. 416–435.

  33. 33

    Smyslova, I.G., Komkov, A.I., Pavshukov, V.V., and Kuznetsova, N.V., Kyzylkumite V V2Ti3O9 –a new mineral from a group of complex vanadium and titanium oxides, Zap. Ross. Mineral. O-va, 1981, vol. 110, no.5, pp. 607–612.

    Google Scholar 

  34. 34

    Toulmin, P. and Barton, P.B., A thermodynamic study of pyrite and pyrrhotite, Geochim. Cosmochim. Acta, 1964, vol. 28, pp. 641–671.

    Article  Google Scholar 

  35. 35

    Zakrzewski, M.A., Burke, E.A.J., and Lustenhouwer, W.J., Vourelainenite, a new spinel, and associated minerals from the Stra (Doverstorp) pyrite deposit, central Sweden, Can. Mineral., 1982, vol. 20, pp. 281–290.

    Google Scholar 

Download references


We thank the analysts of the Geological Institute, L.I. Konstantinova for the analyses of the chemical composition of the ores and A.V. Chernyavskii, for the photographs of the samples. Also, we thank V.V. Shilovskikh and N.S. Vlasenko (Resource Center “Geomodel”, Saint Petersburg State University) for helping in minerals investigations and E. Murashova for translating of this article.

Author information



Corresponding author

Correspondence to A. A. Kompanchenko.

Additional information

Translated by E. Murashova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kompanchenko, A.A., Voloshin, A.V. & Bazai, A.V. The Mineral Composition of Paleoproterozoic Metamorphosed Massive Sulfide Ores in the Kola Region (A Case Study of the Bragino Ore Occurrence, Southern Pechenga). Geol. Ore Deposits 62, 618–628 (2020).

Download citation


  • massive sulfide ores
  • pyrite
  • pyrrhotite
  • Paleoproterozoic
  • Kola region