Advertisement

Geology of Ore Deposits

, Volume 57, Issue 1, pp 1–20 | Cite as

Problems in estimation of the formation depth of hydrothermal deposits by data on pressure of mineralizing fluids

Article

Abstract

In this paper, the formation depth of hydrothermal deposits is proposed to be roughly estimated by data on pressure variations in fluid inclusions from maximum P max to minimum P min values, taking into account the restrictions to the physical limits of this range based on lithostatic and hydrostatic fluid pressure. Under the assumption of a regressive trend in the PT conditions throughout the geological history of the deposits, it is possible to estimate the minimum depth at the beginning of the mineralization process, using a P max value and lithostatic fluid pressure gradient (∼260 bar/km), and the maximum depth at the completion of mineralization process, using a P min value and hydrostatic gradient (∼100 bar/km). If the mineral deposition depth estimated from the values of P max and lithostatic fluid pressure gradient is consistent with the depth estimate from the values of P min and hydrostatic fluid pressure gradient, then the resulting depth estimates correspond to the deposit formation depth unchanged throughout the mineral deposition process. In case of the ratio P max/P min > 2.6–3.0, the deposit is mineralized under variable depth coordinates with an upward movement of mineral deposition level, according to obtained estimates, over a depth range of up to >15 km. In case of the ratio P max/P min < 2.6, the data on fluid pressure variations does not allow making any definite conclusions on the trends in the deposit formation depth. In deposits with an upward movement of the mineral deposition level, the trends in depth variations based on fluid pressure data are in qualitative agreement with the data on minimum temperature T min recorded in deposit fluid inclusions under the assumption of its physical restriction to geothermal field values.

Keywords

Fluid Inclusion Gold Deposit Fluid Pressure Lithostatic Pressure Hydrothermal Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S.N. and Rose, A.W., Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico, Econ. Geol., 1980, vol. 75, pp. 229–250.Google Scholar
  2. Allan, M.M., Morrisson, G.W., and Yardley, B.W.D., Physicochemical evolution of a porphyry-breccia system: a laser ablation ICP-MS study of fluid inclusions in the Mount Leyshon Au Deposit, Queensland, Australia, Econ. Geol., 2011, vol. 106, pp. 413–436.Google Scholar
  3. Baker, T., Bertelli, M., Blenkinsop, T., et al., P-T-X-conditions of fluids in the sunrise dam gold deposit, western Australia, and implications for the interplay between deformation and fluids, Econ. Geol., 2010, vol. 105, pp. 873–894.Google Scholar
  4. Baksheev, I.A., Prokof’ev, V.Yu., and Ustinov, V.I., Genesis of metasomatic rocks and mineralized veins at the Berezovskoe deposit, Central Urals: evidence from fluid inclusions and stable isotopes, Geochem. Int., 2001, Suppl. 2, pp. S129–S144.Google Scholar
  5. Bkhattacharaia, S. and Panigrain, M.K., Heterogeneity of fluid characteristics in Ramagiri Penakacherla, the East Darvar Craton: relation to gold mineralization, Geol. Geofiz., 2011, vol. 52, pp. 1821–1834.Google Scholar
  6. Bortnikov, N.S., Prokof’ev, V.Yu., and Razdolina, N.V., Origin of the Charmitan gold-quartz deposit (Uzbekistan), Geol. Ore Deposits, 1996, vol. 38, no. 3, pp. 208–226.Google Scholar
  7. Bortnikov, N.S., Bryzgalov, I.A., Krivitskaya, N.N., et al., The Maiskoe multimegastage disseminated gold-sulfide deposit (Chukotka, Russia): mineralogy, fluid inclusions, stable isotopes (O and S), history, and conditions of formation, Geol. Ore Deposits, 2004, vol. 46, no. 6, pp. 409–440.Google Scholar
  8. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 87–128.Google Scholar
  9. Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: a case of combined mesothermal goldquartz and epithermal stibnite ores, Geol. Ore Deposits, 2010, vol. 52, no. 5, pp. 339–372.Google Scholar
  10. Bowman, J.R., Parry, W.T., Kropp, W.P., and Kruer, S.A., Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah, Econ. Geol., 1987, vol. 82, pp. 395–428.Google Scholar
  11. Brown, P., FLINCOR: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.Google Scholar
  12. Buchholz, P., Oberthur, T., Luders, V., and Wilkinson, J., Multistage Au-As-Sb mineralization and crustal-scale fluid evolution in the Kwekwe district, Midlands greenstone belt, Zimbabwe: a combined geochemical, mineralogical, stable isotope, and fluid inclusion study, Econ. Geol., 2007, vol. 102, pp. 347–378.Google Scholar
  13. Budd, A.R. and Skirrow, R.G., The nature and origin of gold deposits of the Tarcoola goldfield and implications for the Central Gawler gold province, South Australia, Econ. Geol., 2007, vol. 102, pp. 1541–1563.Google Scholar
  14. Coullbaly, Y., Boiron, M.C., Cathelineau, M., and Kouamelan, A.N., Fluid immiscibility and gold deposition in the Birimian quartz veins of the Angovia deposit (Yaoure, Ivory Coast), J. of Afr. Earth Sci., 2008, vol. 50, pp. 234–254.Google Scholar
  15. Cox, S.F., Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust, in Econ. Geol. 100th Anniv. Vol., 2005, Littleton, Colorado: Society of Economic Geologists, Inc., pp. 39–75.Google Scholar
  16. Craw, D., Gilded by earthquakes, Nat. Geosci., 2013, vol. 6, pp. 248–250.Google Scholar
  17. Ermakov, N.P. and Dolgov, Yu.A., Termobarogeokhimiya (Thermobarogeochemistry), Moscow: Nedra, 1979.Google Scholar
  18. Fyfe, U., Prais, N., and Tompson, A., Flyuidy v zemnoi kore (Fluids in the Earth’s Crust), Moscow: Mir, 1981.Google Scholar
  19. Faleiros, A.M., Campanha, G.A.C., Faleiros, F.M., et al., Fluid regimes, fault-valve behavior and formation of goldquartz veins-the Morro do Ouro mine, Ribeira belt, Brazil, Ore Geol. Rev., 2014, vol. 56, pp. 442–456.Google Scholar
  20. Fan, H.R., Xie, Y.H., and Yang, J.H., Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China, Mineral. Deposita, 2003, vol. 38, pp. 739–750.Google Scholar
  21. Fedorovich, J., Stauffer, M., and Kerrich, R., Structural setting and fluid characteristics of the Proterozoic Tartan Lake gold deposit, Trans-Hudson Orogen, Northern Manitoba, Econ. Geol., 1991, vol. 86, pp. 1434–1467.Google Scholar
  22. Gibsher, N.A., Tomilenko, A.A., Sazonov, A.M., et al., Gerfed gold deposit: fluid characteristics and PT formation conditions of quartz veins (Yenisei, Russia), Geol. Geofiz., 2011, vol. 52, pp. 1851–1867.Google Scholar
  23. Goryachev, N.A., Vikent’eva, O.V., Bortnikov, N.S., et al., The world-class Natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore, Geol. Ore Deposits, 2008, vol. 50, no. 5, pp. 362–390.Google Scholar
  24. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., et al., Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geol. Rev., 1998, vol. 13, pp. 7–27.Google Scholar
  25. Ibrahim, M.S. and Kyser, T.K., Fluid inclusion and isotope systematics of the high-temperature Proterozoic star lake lode gold deposit, Northern Saskatchewan, Canada, Econ. Geol., 1991, vol. 86, pp. 1468–1490.Google Scholar
  26. Jiang, S.H., Nie, F.J., Hu, P., et al., Mayum: an orogenic gold deposit in Tibet, China, Ore Geol. Rev., 2009, vol. 36, pp. 160–173.Google Scholar
  27. Kalyuzhny, V.A., Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh (Fundamentals of Science on Mineral Forming Fluids), Kiev: Naukova Dumka, 1982.Google Scholar
  28. Kartashov, Yu.M., Matveev, B.V., Mikheev, G.V., and Fadeev, A.B., Prochnost’ i deformiruemost’ gornykh porod (Strength and Deformability of Rocks), Moscow: Nedra, 1979.Google Scholar
  29. Kesler, S.E. and Wilkinson, B.H., The role of exhumation in the temporal distribution of ore deposits, Econ. Geol., 2006, vol. 101, pp. 919–922.Google Scholar
  30. Kesler, S.E. and Wilkinson, B.H., Resources of gold in Phanerozoic epithermal deposits, Econ. Geol., 2009, vol. 104, pp. 623–633.Google Scholar
  31. Kim, K.H., Lee, S., Nagao, K., et al., He-Ar-H-O isotopic signatures in Au-Ag bearing ore fluids of the Sunshin epithermal gold-silver ore deposits, South Korea, Chem. Geol., 2012, vol. 320, pp. 128–139.Google Scholar
  32. Kissin, I.G., Flyuidy v zemnoi kore: geofizicheskie i tektonicheskie aspekty (Fluids in the Earth’s Crust: Geophysical and Tectonic Aspects), Moscow: Nauka, 2009.Google Scholar
  33. Klein, E.L., dos Santos, R.A., Fuzikawa, K., and Angelica, R.S., Hydrothermal fluid evolution and structural control of the Guarim gold mineralisation, Tapajos Province, Amazonian Craton, Brazil, Miner. Deposita, 2001, vol. 36, pp. 149–164.Google Scholar
  34. Klein, E.L., Ribeiro, J.W.A., Harris, C., et al., Geology and fluid characteristics of the Mina Velha and Mandiocal orebodies and implications for the genesis of the orogenic Chega Tudo gold deposit, Gurupi belt, Brazil, Econ. Geol., 2008, vol. 103, pp. 957–980.Google Scholar
  35. Klein, E.L. and Fuzikawa, K., Origin of the CO2-only fluid inclusions in the Palaeoproterozoic Carara vein-quartz gold deposit, Ipitinga Auriferous District, SE-Guiana Shield, Brazil: implications for orogenic gold mineralization, Ore Geol. Rev., 2010, vol. 37, pp. 31–40.Google Scholar
  36. Klemm, L.M., Pettke, T., and Heinrich, C.A., Hydrothermal evolution of the El Teniente deposit, Chile: porphyry Cu-Mo ore deposition from low-salinity magmatic fluids, Econ. Geol., 2007, vol. 102, pp. 1021–1045.Google Scholar
  37. Kryazhev, S.G., Izotopno-geokhimicheskii rezhim formirovaniya zolotorudnogo mestorozhdeniya Muruntau (Isotopic-Geochemical Regime of the Muruntau Gold Deposit Formation), Moscow: Cent. Geol. Res. Inst. Nonferrous an Precious Metals, 2002.Google Scholar
  38. Laverov, N.P., Prokof’ev, V.Yu., Distler, V.V., et al., New data on conditions of ore deposition and composition of ore-forming fluids in the Sukhoi Log gold-platinum deposit, Dokl. Earth Sci., 2000, vol. 371, no. 2, pp. 357–361.Google Scholar
  39. Lawrence, D.M., Treloar, P.J., Rankin, A.H., et al., A fluid inclusion and stable isotope study at the Loulo Mining District, Mali, West Africa: implications for multifluid sources in the generation of orogenic gold deposits, Econ. Geol., 2013, vol. 108, pp. 229–257.Google Scholar
  40. Le Fort, D., Hanley, J., and Gullong, M., Subepithermal Au-Pd mineralization associated with an alkalic porphyry Cu-Au deposit, Mount Milligan, Quesnel Terrane, British Columbia, Canada, Econ. Geol., 2011, vol. 106, pp. 781–808.Google Scholar
  41. Leach, D.L., Marsh, E., Emsbo, P., et al., Nature of hydrothermal fluids at the shale-hosted Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska, Econ. Geol., 2004, vol. 99, pp. 1449–1480.Google Scholar
  42. Lockner, D.A., Rock failure. Rock Physics and Phase Relations: a Handbook of Physical Constants, Ahrens, T.J., Ed. American Geophysical Union Reference Shelf, 1995, no. 3, pp. 127–147.Google Scholar
  43. Manning, C.E. and Ingebritsen, S.E., Geological implications of a permeability-depth curve for the continental crust, Geol., 1999, vol. 27, no. 12, pp. 1107–1110.Google Scholar
  44. Matthäi, S.K. and Fisher, G., Quantitative modeling of fault-fluid-discharge and fault-dilation-induced fluid pressure variations in the seismogenic zone, Geol., 1996, vol. 24, pp. 183–186.Google Scholar
  45. Mel’nikov, F.P., Prokof’ev, V.Yu., and Shatagin, N.N., Termobarogeokhimiya (Thermobarogeochemistry), Moscow: Akademicheskii Proekt, 2008.Google Scholar
  46. Metamorfizm i tektonika (Metamorphism and Tectonics) Sklyarov, E.V, Ed., Moscow: IntermetInzheniring, 2001.Google Scholar
  47. Moore, W.J. and Nash, J.T., Alteration and fluid inclusion studies of the porphyry copper ore body at Bingham, Utah, Econ. Geol., 1974, vol. 69, pp. 631–645.Google Scholar
  48. Nash, J.T. and Cunninghem, C.G., Fluid inclusion studies of the fluorspar and gold deposits, Jamestown District, Colorado, Econ. Geol., 1973, vol. 68, pp. 1247–1262.Google Scholar
  49. Naumov, V.B. and Naumov, G.B., Mineralizing fluids and physicochemical evolution laws, Geokhimiya, 1980, no. 10, pp. 1450–1460.Google Scholar
  50. Naumov, V.B., Determination of pressure and density of mineralizing environments by inclusions in minerals, in Ispol’zovanie metodov termobarogeokhimii pri poiskakh i izuchenii rudnykh mestorozhdenii (Use of Thermobarogeochemistry in the Search and Study of Ore Deposits), Moscow: Nedra, 1982, pp. 85–94.Google Scholar
  51. Naumov, V.B. and Kovalenko, V.I., Characteristics of principal volatile components of natural magmas and metamorphic fluids based on the research data on inclusions in minerals, Geokhimiya, 1986, no. 5, pp. 590–600.Google Scholar
  52. Naumov, V.B., Safonov, Yu.G., and Mironova, O.F., Some regularities of spatial variations in fluid parameters at Kolar gold deposit (India), Geol. Ore Deposits, 1988, vol. 30, no. 6, pp. 105–109.Google Scholar
  53. Naumov, V.B., Kovalenker, V.A., Myznikov, I.K., et al., High-pressure fluids in hydrothermal veins at the Ryabinovskoe alkali massif (Central Aldan), Dokl. Ross. Akad. Nauk, 1995, vol. 343, pp. 99–102.Google Scholar
  54. Naumov, V.B., Kovalenko, V.I., and Dorofeeva, V.A., Magmatic volatile components and their role in the formation of ore-forming fluids, Geol. Ore Deposits, 1997, vol. 39, no. 6, pp. 451–460.Google Scholar
  55. Naumov, V.B., Dorofeeva, V.A., and Mironova, O.F., Basic physicochemical parameters of natural mineralizing fluids, Geokhimiya, 2009, no. 8, pp. 825–851.Google Scholar
  56. Nikolaev, Yu.N., Prokof’ev, V.Yu., Apletalin, A.V., et al., Gold-telluride mineralization of the Western Chukchi Peninsula, Russia: mineralogy, geochemistry, and formation conditions, Geol. Ore Deposits, 2013, vol. 55, no. 2, pp. 96–124.Google Scholar
  57. Pandalai, H.S., Jadhav, G.N., Mathew, B., et al., Dissolution channels in quartz and the role of pressure changes in gold and sulfide deposition in the Archean, greenstonehosted, Hutti gold deposit, Karnataka, India, Mineral. Deposita, 2003, vol. 38, pp. 597–624.Google Scholar
  58. Petrov, V.A., Lespinas, M., and Khammer, I., Tectonodynamics of fluid-conducting structural elements and migration of radionuclides in massifs of crystalline rocks, Geol. Ore Deposits, 2008, vol. 50, no. 2, pp. 89–111.Google Scholar
  59. Phillips, W.J., Hydraulic fracturing and mineralization, J. Geol. Soc. London, 1972, vol. 128. pp. 337–359.Google Scholar
  60. Poutiainen, M. and Partamies, S., Fluid inclusion characteristics of auriferous quartz veins in Archean and Paleoproterozoic greenstone belts of eastern and southern Finland, Econ. Geol., 2003, vol. 98, pp. 1355–1369.Google Scholar
  61. Prokof’ev, V.Yu., Afanas’eva, Z.B., Ivanova, G.F., Buaron, M.K., and Marin’yak, Kh., Study of fluid inclusions in minerals at the Olimpiadnenskoe Au-(Sb-W) deposit (Yenisei Mountain Ridge), Geokhimiya, 1994, no. 7, pp. 1012–1029.Google Scholar
  62. Prokof’ev, V.Yu., Types of hydrothermal ore-forming systems (from fluid inclusion studies), Geol. Ore Deposits, 1998, vol. 40, no. 6, pp. 457–470.Google Scholar
  63. Prokof’ev, V.Yu., Bortnikov, N.S., Zorina, L.D., et al., Genetic features of the Darasun gold-sulfide deposit (Eastern Transbaikal Region), Geol. Ore Deposits, 2000, vol. 42, no. 6, pp. 474–495.Google Scholar
  64. Prokof’ev, V.Yu. and Spiridonov, E.M., Composition of metamorphic fluids and transformation conditions at the Kochkar gold deposit (Urals), in Petrografiya na rubezhe XXI veka: Itogi i perspektivy. Mater. Vtorogo Vserossiiskogo petrograficheskogo soveshchaniya 27–30 iyunya 2000 goda (Petrography at the Turn of the Twenty First Century: Results and Prospects. Proceedings of the Second All-Russian Petrographic Meeting on June 27–30, 2000), Syktyvkar, Geoprint: 2000, pp. 88–90.Google Scholar
  65. Prokof’ev, V.Yu, Zorina, L.D., Baksheev, I.A., et al., Minerals and formation conditions of ores of the Teremkin gold deposit (Eastern Transbaikal Region, Russia), Geol. Ore Deposits, 2004, vol. 46, no. 5, pp. 332–352.Google Scholar
  66. Prokof’ev, V.Yu., Volkov, A.V., Kuleshevich, L.V., and Sidorov, A.A., First data on formation conditions and composition of ore-forming fluids in gold occurrences of the Kostomuksha iron deposit, Karelia, Dokl. Earth Sci., 2005, vol. 402, nos. 1–4, pp. 582–586.Google Scholar
  67. Prokof’ev, V.Yu., Zorina, L.D., Kovalenker, V.A., et al., Composition, formation conditions, and genesis of the Talatui gold deposit, the Eastern Transbaikal Region, Russia, Geol. Ore Deposits, 2007, vol. 49, no. 1, pp. 31–68.Google Scholar
  68. Prokof’ev, V.Yu., Savva, N.E., Volkov, A.V., and Sidorov, A.A., Peculiarities of formation of the Devonian Au-Ag epithermal mineralization in pipe orebodies, Dokl. Earth Sci., 2012, vol. 443, nos. 4–6, pp. 439–443.Google Scholar
  69. Rebetsky, Yu.L., Tektonicheskie napryazheniya i prochnost’ porodnykh massivov (Tectonic Stresses and Strength of Mountainous Areas), Moscow: Akademkniga, 2007.Google Scholar
  70. Redder, E., Flyuidnye vklyucheniya v mineralakh (Fluid Inclusions in Minerals), Moscow: Mir, 1987.Google Scholar
  71. Safonov, Yu.G., Formation and occurrence depth of ore deposits, Otechestv. Geol., 2000, no. 4, pp. 20–27.Google Scholar
  72. Safonov, Yu.G., Prokof’ev, V.Yu., Kotov, A.A., and Saroyan, M.R., P-T parameters of ore-forming fluids as indicators of tectonic formation environments of gold deposits in the Baikal-Patom Plateau, in Tezisy dokladov XV Vserossiiskoi konferentsii po termobarogeokhimii. 18–20 sentyabrya 2012 g. (Report Theses of the Fifteenth National Conference on Thermobarogeochemistry. September 18–20, 2012), Moscow: Inst. Geol. Ore Deposits, Petrogr., Mineral., Geochem., Russ. Acad. Sci., 2012, pp. 75–77.Google Scholar
  73. Saroyan, M.R., Prokof’ev, V.Yu., and Safonov, Yu.G., Formation conditions and composition of ore-forming fluids at the Western deposit, Sukhoy Log ore district (Russia), in Mater. XIII Mezhdunar. konf. po termobarogeokhimii i IV simpoziuma APIFIS (Proceedings of the Thirteenth International Conference on Thermobarogeochemistry and Fourth APIFIS Symposium), Moscow: Inst. Geol. Ore Deposits, Petrogr., Mineral., Geochem., Russ. Acad. Sci., 2008, vol. 2, pp. 194–197.Google Scholar
  74. Secor, D.T., Role of fluid pressure in jointing, Am. J. Sci., 1965, vol. 263, pp. 633–646.Google Scholar
  75. Seo, J.H., Guillong, M., and Heinrich, C.A., Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and pH in ore mineral deposition at Bingham Canyon, Econ. Geol., 2012, vol. 107, pp. 333–356.Google Scholar
  76. Scheidegger, A.E., Osnovy geodinamiki (Principles of Geodynamics), Moscow: Nedra, 1987.Google Scholar
  77. Sheldon, H.A. and Ord, A., Evolution of porosity, permeability and fluid pressure in dilatant fault post-failure: implications for fluid flow and mineralization, Geofluids, 2005, vol. 5, pp. 272–288.Google Scholar
  78. Shen, P., Shen, Y.C., Wang, J.B., et al., Methane-rich fluid evolution of the Baogutu porphyry Cu-Mo-Au deposit, Xinjiang, NW China, Chem. Geol., 2010, vol. 275, pp. 78–98.Google Scholar
  79. Shimizu, T., Matsueda, H., Ishiyama, D., and Matsubaya, O., Genesis of epithermal Au-Ag mineralization of the Koryu Mine, Hokkaido, Japan, Econ. Geol., 1998, vol. 93, pp. 303–325.Google Scholar
  80. Simmons, S.F. and Brown, K.L., Gold in magmatic hydrothermal solutions and the rapid formation of a giant ore deposit, Sci., 2006, vol. 214, pp. 288–291.Google Scholar
  81. Singh, M.M., Strength of Rock. McGrow-Hill/CINDAS data series on material properties. Touloukian, Y.S., Judd, W.R., and Roy, R.F., Eds. II-2. Physical Properties of Rocks and Minerals. Chapter 5. MacGrow-Hill Book Co. 1981. pp. 83–121.Google Scholar
  82. Sitter de L.U., Strukturnaya geologiya (Structural Geology), Moscow: Inostrannaya Literatura, 1960.Google Scholar
  83. Sklyarov, E.V., Exhumation nature of metamorphic complexes, Geol. Geofiz., 2006, vol. 47, no. 1, pp. 71–75.Google Scholar
  84. Smith, T.J., Cloke, P.L., and Kesler, S.E., Geochemistry of fluid inclusions from the McIntyre-Hollinger gold deposit, Timmins, Ontario, Canada, Econ. Geol., 1984, vol. 79, pp. 1265–1285.Google Scholar
  85. Smith, M.P., Gleeson, S.A., and Yardley, B.W.D., Hydrothermal fluid evolution and metal transport in the Kiruna district, Sweden: contrasting metal behavior in aqueous and aqueous-carbonic brines, Geochim. Cosmochim. Acta, 2013, vol. 102, pp. 89–112.Google Scholar
  86. So, C.-S. and Yun, S.-T., Geochemical evidence of progressive meteoric water interaction in epithermal Au-Ag mineralization, Jeongju-Buan District, Republic of Korea, Econ. Geol., 1996, vol. 91, pp. 636–646.Google Scholar
  87. Spiridonov, E.M. and Prokof’ev, V.Yu., Geochemical features and formation conditions of pluton-related gold-telluride concentrations in Northern Kazakhstan Caledonides, Geol. Ore Deposits, 1989, vol. 31, no. 6, pp. 26–39.Google Scholar
  88. Spiridonov, A.M., Zorina, L.D., Letunov, S.P., and Prokof’ev, V.Yu., Fluid regime of mineralization at the Baley gold-igneous system (Eastern Transbaikal Region, Russia), Geol. Geofiz., 2010, vol. 51, no. 10, pp. 1413–1422.Google Scholar
  89. Spry, P.G., A fluid inclusion and sulfur isotope study of precious and base metal mineralization spatially associated with the patch and gold cup breccia pipes, Central City, Colorado, Econ. Geol., 1987, vol. 82, pp. 1632–1639.Google Scholar
  90. Sun, X.M., Zhang, Y., Xiong, D.X., et al., Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China, Ore Geol. Rev., 2009, vol. 36, pp. 235–249.Google Scholar
  91. Taylor, B.E., Epithermal gold deposits, Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, Goodfellow, W.D., Ed., Geological Association of Canada, Mineral Deposits Division. Special Publication, 2007, no. 5, pp. 113–139.Google Scholar
  92. Turcotter, D. and Schubert D., Geodinamika. Geologicheskie prilozheniya fiziki sploshnykh sred (Geodynamics. Application of Continuum Physics to Geological Problems), Moscow: Mir, 1985.Google Scholar
  93. Tombros, S.F., Seymour, K.St., Williams-Jones, A.E., and Spry, P.G., Later stages of evolution of an epithermal system: Au-Ag mineralizations at Apigania Bay, Tinos Island, Cyclades, Hellas, Greece, Mineral. Petrol., 2008, vol. 94, pp. 175–194.Google Scholar
  94. Tosdal, R.M., Dilles, J.H., and Cooke, D.R., From source to sinks in auriferous magmatic-hydrothermal and epithermal deposits, Elem., 2009, vol. 5, no. 5, pp. 289–295.Google Scholar
  95. Urban, M., Thomas, R., Hurai, V., et al., Superdense CO2 inclusions in Cretaceous quartz-stibnite veins hosted in low-grade Variscan basement of the Western Carpathians, Slovakia, Mineral. Deposita, 2006, vol. 40, pp. 867–873.Google Scholar
  96. Vinokurov, S.F., Prokof’ev, V.Yu., Dymkov, Yu.M., and Nesterova, M.V., Fluid inclusions of late mineral assemblages at paleovalley uranium deposits in the West Siberian ore district: thermochemical features and genetic effects, Geokhimiya, 2013, no. 10, pp. 924–946.Google Scholar
  97. Volkov, A.V., Cherepanova, N.V., Prokof’ev, V.Yu., et al., Gold deposit in the Butarny granitoid stock, Russian Northeast, Geol. Ore Deposits, 2013, vol. 55, no. 3, pp. 185–206.Google Scholar
  98. Volkov, A.V., Egorov, V.N., Prokof’ev, V.Yu., et al., Gold deposits in dikes of the Yana-Kolyma Belt, Geol. Ore Deposits, 2008, vol. 50, no. 4, pp. 275–298.Google Scholar
  99. Volkov, A.V., Prokof’ev, V.Yu., Alekseev, V.Yu., et al., Oreforming fluids and conditions of formation of gold-sulfide-quartz mineralization in the shear zone: Pogromnoe deposit (Eastern Transbaikalian Region), Dokl. Earth Sci., 2011, vol. 441, nos. 1–3, pp. 1492–1497.Google Scholar
  100. Volkov, A.V., Savva, N.E., Sidorov, A.A., et al., Shkol’noe gold deposit, the Russian Northeast, Geol. Ore Deposits, 2011, vol. 53, no. 1, pp. 1–26.Google Scholar
  101. Weatherley, D.K. and Henley, R.W., Flash vaporization during earthquakes evidenced by gold deposits, Nat. Geosci., 2013, vol. 6, pp. 294–298.Google Scholar
  102. Xavier, R.P. and Coelho, C.E.S., Fluid regimes related to the formation of lode-gold deposits in Rio Itapicuru greenstone belt, Bahia: a fluid inclusion review, Rev. Bras. Geocienc., 2000, vol. 30, no. 2, pp. 311–314.Google Scholar
  103. Yao, Y., Morteani, G., and Trumbull, R.B., Fluid inclusion microthermometry and the P-T-evolution of gold-bearing hydrothermal fluids in the Niuxinshan gold deposit, Eastern Hebei Province, NE China, Mineral. Deposita, 1999, vol. 34, pp. 348–365.Google Scholar
  104. Zhang, D.H., Xu, G.J., Zhang, W.H., and Golding, S.D., High salinity fluid inclusions in the Yinshan polymetallic deposit from the Le-De metallogenic belt in Jiangxi Province, China: their origin and implications for ore genesis, Ore Geol. Rev., 2007, vol. 31, nos. 1–4, pp. 247–260.Google Scholar
  105. Zhang, L., Chen, H.Y., Chen, Y.J., et al., Geology and fluid evolution of the Wangfeng orogenic-type gold deposit, Western Tian Shan, China, Ore Geol. Rev., 2012, vol. 49, pp. 85–95.Google Scholar
  106. Zhang, G.-B., Yang, Y.-C., Wang, J., et al., Geology, geochemistry, and genesis of the hot-spring-type Sipingshan gold deposit, Eastern Heilongjiang Province, Northeast China, Int. Geol. Rev., 2013, vol. 55, no. 4, pp. 482–495.Google Scholar
  107. Zhong, H.R., Chao, S.W., Wu, B.X., et al., Geology and geochemistry of Carlin-type gold deposits in China, Miner. Deposita, 2002, vol. 37, pp. 378–392.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy and GeochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations