Geology of Ore Deposits

, Volume 56, Issue 4, pp 239–256 | Cite as

Structure, age, and ore potential of the Burpala rare-metal alkaline massif, northern Baikal region

  • N. V. Vladykin
  • I. A. Sotnikova
  • A. B. Kotov
  • V. V. Yarmolyuk
  • E. B. Sal’nikova
  • S. Z. Yakovleva


The Burpala alkaline massif is a unique geological object. More than 50 Zr, Nb, Ti, Th, Be, and REE minerals have been identified in rare-metal syenite of this massif. Their contents often reach tens of percent, and concentrations of rare elements in rocks are as high as 3.6% REE, 4% Zr, 0.5% Y, 0.5% Nb, 0.5% Th, and 0.1% U. Geological and geochemical data show that all rocks in the Burpala massif are derivatives of alkaline magma initially enriched in rare elements. These rocks vary in composition from shonkinite, melanocratic syenite, nepheline and alkali syenites to alaskite and alkali granite. The extreme products of magma fractionation are rare-metal pegmatites, apatite-fluorite rocks, and carbonatites. The primary melts were related to the enriched EM-2 mantle source. The U-Pb zircon ages of pulaskite (main intrusive phase) and rare-metal syenite (vein phase) are estimated at 294 ± 1 and 283 ± 8 Ma, respectively. The massif was formed as a result of impact of the mantle plume on the active continental margin of the Siberian paleocontinent.


Nepheline Rare Metal Nepheline Syenite Aegirine Alkali Granite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreev, G.V., Petrologiya formatsii kalievykh, nefelinovykh i shchelochnykh sienitov (Petrology of Potassic, Nepheline, and Alkali Syenites), Novosibirsk: Nauka, 1981.Google Scholar
  2. Arkhangel’skaya, V.V., Duration of formation of some alkaline massifs in the Baikal mountain region, Dokl. Akad. Nauk SSSR, 1967, vol. 175, no. 3, pp. 605–607.Google Scholar
  3. Doroshkevich, A.G., Ripp, G.S., Sergeev, S.A., and Konopel’ko, D.L., U-Pb (SRIMP-II) geochronology of the Mukhal alkaline massif, western Transbaikal region, Geol. Geofiz., 2012a, vol. 53, no. 2, pp. 169–174.Google Scholar
  4. Doroshkevich, A.G., Ripp, G.S., Izbrodin, I.A., and Savatenkov, V.M., Alkaline magmatism of the Vitim province, West Transbaikalia, Russia: Age, mineralogical, geochemical, and isotope (O, C, D, Sr, Nd) data, Lithos, 2012b, vol. 152, pp. 157–172.CrossRefGoogle Scholar
  5. Efimov, A.F. and Ganzeev, A.A., Mikroklinizirovannye granit-aplity massiva Burpala (Microclinization of Granite Aplite in the Burpala Massif), Moscow: Nedra, 1972.Google Scholar
  6. Ernst, R.E., Large igneous provinces, Cambridge: Cambridge Univ. Press, 2014.Google Scholar
  7. Grechishchev, O.K., Zhmodik, S.M., and Shcherbov, B.L., Redkometal’noe mestorozhdenie Ulug-Tanzek (The Ulug-Tanzek Rare-Metal Deposit), Novosibirsk: GEO, 2010.Google Scholar
  8. Kotov, A.B., Vladykin, N.V, Yarmolyuk, V.V, Sal’nikova, E.B., et al., Permian age of the Burpala alkaline pluton, northern Transbaikalia: Geodynamic implications, Dokl. Earth Sci., 2013, vol. 453, no. 1, pp. 1082–1085.CrossRefGoogle Scholar
  9. Kovach, V.P., Sal’nikova, E.B., Rytsk, E.Yu., Yarmolyuk, V.V., et al., Duration of Formation of the Angara-Vitim Batholith: Results of U-Pb geochronological studies, Dokl. Earth Sci., 2012, vol. 444, no. 1, pp. 553–558.CrossRefGoogle Scholar
  10. Kovalenko, V.I., Yarmolyuk, V.V., Vladykin, N.V., et al., Epochs of formation, geodynamic setting, and sources of rare-metal magmatism in Central Asia, Petrology, 2002, vol. 10, no. 3, pp. 199–221.Google Scholar
  11. Kovalenko, V.I., Yarmolyuk, V.V., Andreeva, I.A., et al., Redkometal’nyi magmatizm: assotsiatsii porod, sostav i istochniki magm, geodinamicheskie obstanovki formirovaniya (Rare-Metal Magmatism: Rock Associations, Magma Composition and Sources, Geodynamic Settings), Moscow: IGEM RAN, 2006.Google Scholar
  12. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.CrossRefGoogle Scholar
  13. Litvinovsky, B.A., Zanvilevich, A.N., Alakshin, A.M., and Podladchikov, Yu.Yu., Angaro-Vitimskii batolit — krupneishii granitoidnyi pluton (Angara-Vitim Batholith-the Largest Granitod Pluton), Novosibirsk: Nauka, 1992.Google Scholar
  14. Litvinovsky, B.A., Jahn, B.M., Zanvilevich, A.N., Saunders, A., et al., Petrogenesis of syenite-granite suite from Bryansky Complex (Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas, Russian Geol. Geophys., 2002, vol. 189, no. 1, pp. 105–133.Google Scholar
  15. Ludwig, K.R., ISOPLOT/Ex.Version 2.06. A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronological Center Spec. Publ., 1999, no. 1a.Google Scholar
  16. Ludwig, K.R., PbDat for MS-DOS, version 1.21, U.S. Geol. Survey Open-File Rept., 1991, pp. 88–542.Google Scholar
  17. Mattinson, J.M., A study of complex discordance in zircons using step-wise dissolution techniques, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 117–129.CrossRefGoogle Scholar
  18. Mineralogiya shchelochnykh massivov i ikh mestorozhdenii (Mineralogy of Alkaline Massifs and Related Deposits), Semenov. E.I., Ed., Moscow: Nauka, 1974.Google Scholar
  19. Pokrovsky, B.G. and Zhidkov, A.Ya., Source of matter for ultrapotassic alkaline rocks of the Synnyr and South Sakun massifs in Transbaikalia from isotopic data, Petrologiya, 1993, vol. 1, no. 2, pp. 195–204.Google Scholar
  20. Pokrovsky, B.G., Korovaya kontaminatsiya mantiinykh magm po dannym izotopnoi geokhimii (Crustal Contamination of Mantle-Derived Magmas from Isotope Geochemistry), Moscow: Nauka, 2000.Google Scholar
  21. Portnov, A.M., Mineralogy of alkaline pegmatites in the Burpala massif Cand. Sci. (Geolmin) Dissertation, Moscow, 1966.Google Scholar
  22. Portnov, A.M. and Nechaeva, E.A., Nephelinization in contact zones of the Burpala alkaline massif, Izv. Akad. Nauk SSSR, Ser. Geol., 1967, no. 5, pp. 71–75.Google Scholar
  23. Ripp, G.S, Vladykin, N.V., Doroshkevich, A.G., and Sotnikova, I.A., The Akit massif of alkaline rocks and related mineralization (North Baikal region), in Glubinnyi magmatizm, ego istochniki i plyumy (Deep Magmatism, Its Sources and Plumes), Irkutsk: Inst. Geochem, Siberian Branch, RAS, 2006, vol. 2, pp. 285–304.Google Scholar
  24. Sotnikova, I.A., Mineralogy and geochemistry of raremetal alkaline rocks in the North Baikal region, Cand. Sci. (Geolmin) Dissertation, Irkutsk: Inst. Geochem., Siberian Branch, RAS, 2009.Google Scholar
  25. Sotnikova, I.A., Prokof’ev, V.Yu., and Vladykin, N.V., Genesis of apatite-fluorite rock in the Burpala pluton, Dokl. Ross. Akad. Nauk, 2011, vol. 441, no. 2, pp. 1703–1705.Google Scholar
  26. Sotnikova, I.A. and Vladykin, N.V., Geology and petrochemistry of deep ultarare-metal Burpala alkaline massif, in Glubinnyi magmatizm, ego istochniki i plyumy (Deep Magmatism, Its Sources and Plumes), Irkutsk: Inst. Geochem., Siberian Branch, RAS, 2012, pp. 256–266.Google Scholar
  27. Stacey, J.S. and Kramers, J.D., Approximation of terrestrial lead isotopic composition by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.CrossRefGoogle Scholar
  28. Steiger, R.H. and Jager, E., Subcomission of geochronology: Convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.Google Scholar
  29. Sugorakova, A.M., Yarmolyuk, V.V., Lebedev, V.I., and Lykhin, D.A., Late Paleozoic alkali granitic magmatism of Tuva and its relation to intraplate activity within the Siberian paleocontinent, Dokl. Earth Sci., 2011, vol. 439, no. 2, pp. 1070–1075.CrossRefGoogle Scholar
  30. Tsygankov, A.A., Matukov, D.I., Berezhnaya, N.G., et al., Magma sources and stages of emplacement of Late Paleozoic granitoids in western Transbaikalia, Geol. Geofiz., 2007, vol. 48, no. 1, pp. 156–180.Google Scholar
  31. Vladykin, N.V., Petrology and ore potential of potassic alkaline rocks in Mongolia-Okhotsk magmatic area, Doctoral (Geolmin) Dissertation, Irkutsk: Inst. Geochem., Siberian Branch, RAS, 1997.Google Scholar
  32. Vladykin, N.V. and Miuzaki, T., Burpala-unique massif of alkaline rocks, in Shchelochnoi magmatizm zemli: Trudy nauchnoi shkoly (Alkaline Magmatism of the Earth. Proceedings of Scientific School), Moscow: GEOKhI RAN, 2001, pp. 73–75.Google Scholar
  33. Vladykin, N.V. and Miuzaki, T., Petrochemistry and Geochemistry of ultrarare-metal Burpala massif, in Geologiya, geokhimiya i geofizika na rubezhe XX-XXI vekov: Mater. konferentsii RFFI (Geology, Geochemistry, and Geophysics at Turn of the 20th–21st Centuries. Proceedings of RFBR), Irkutsk: Inst. Earth’s Crust, Siberian Branch, RAS, 2002, pp. 193–195.Google Scholar
  34. Vladykin, N.V., Geochemistry of Sr and Nd isotopes in alkaline and carbonatite complexes of Siberia and Mongolia and some geodynamic implications, in Problemy istochnikov glubinnogo magmatizma i plyumy (Sources of Deep Magmatism and Plumes), Irkutsk: Inst. Geochem., Siberian Branch, RAS, 2005, pp. 13–30.Google Scholar
  35. Yarmolyuk, V.V., Litvinovsky, B.A., Kovalenko, V.I., et al., Formation stages and sources of the peralkaline granitoid magmatism of the northern Mongolia-Transbaikalia Rift Belt during the Permian and Triassic, Petrology, 2001, vol. 9, no. 4, pp. 302–328.Google Scholar
  36. Yarmolyuk, V.V. and Kovalenko, V.I., Deep geodynamics and mantle plumes: Their role in the formation of the Central Asian Foldbelt, Petrology, 2003, vol. 11, no. 6, pp. 504–531.Google Scholar
  37. Yarmolyuk, V.V., Nikiforov, A.V., Sal’nikova, E.B., et al., Rare-metal granitoids of the Ulug-Tanzek deposit (eastern Tyva): Age and tectonic setting, Dokl. Earth Sci., 2010, vol. 430, no. 2, pp. 95–100.CrossRefGoogle Scholar
  38. Yarmolyuk, V.V., Lykhin, D.A., Shuriga, T.N., et al., Age, composition of rocks, and geological setting of the Snezhnoe beryllium deposit: Substantiation of the Late Paleozoic East Sayan rare-metal zone, Russia, Geol. Ore Deposits, 2011, vol. 53, no. 5, pp. 390–400.CrossRefGoogle Scholar
  39. Yarmolyuk, V.V. and Kuz’min, M.I., Late Paleozoic and Early Mesozoic rare-metal magmatism of Central Asia: Stages, provinces, and formation settings, Geol. Ore Deposits, 2012, vol. 54, no. 5, pp. 313–333.CrossRefGoogle Scholar
  40. Zhidkov, A.Ya., Burtpala and Synnyr alkaline intrusions in northern Baikal region, Cand. Sci. (Geolmin) Dissertation, Leningrad, 1956.Google Scholar
  41. Zhidkov, A.Ya., A new North Baikal alkaline province and some features of nepheline occurrence in their rocks, Dokl. Akad. Nauk SSSR, 1961, vol. 140, no. 1, pp. 181–184.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. V. Vladykin
    • 1
  • I. A. Sotnikova
    • 1
  • A. B. Kotov
    • 2
  • V. V. Yarmolyuk
    • 3
  • E. B. Sal’nikova
    • 2
  • S. Z. Yakovleva
    • 2
  1. 1.Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations