Advertisement

Geology of Ore Deposits

, Volume 55, Issue 3, pp 145–161 | Cite as

A genetic model of PGM hosted in cumulative gabbro-pyroxenite-dunite complexes of the Koryak Highland, Russia

  • A. G. Mochalov
Article

Abstract

A genetic model has been developed for platinum group minerals (PGM) hosted in plutonic gabbro-pyroxenite-dunite (GPD) complexes of the Koryak Highland. The following mineralogical-geochemical and genetic PGM types have been distinguished: (1) magmatic platinum (Pt), (2) magmatic-fluid-metasomatic platinum (Pt) and osmium-platinum (Pt > Os), (3) fluid-metamorphic iridium-platinum (Pt > Ir), and (4) hydrothermal metasomatic platinum-copper (Pt-Cu). PGM of the magmatic Pt type were formed under conditions of monocyclic petrogenesis of Cr-spinel-olivine and olivine-clinopyroxene cumulates as products of picritic magma fractionation in the conduit chamber. The magmatic-fluid-metasomatic platinum Pt and osmium-platinum Pt > Os types were formed by interaction of these early cumulates with magma. The abundance of these types is proportional to injections of picritic magma into the conduit chamber. PGM of the fluid-metamorphic iridium-platinum Pt > Ir type accumulated as a result of synmagmatic recrystallization of GPD cumulates. Their development depends on (1) mono- or polycyclic GPD cumulative complex and (2) the degree of GPD cumulate recrystallization from partial to complete and the degree of transformation of PGM pertaining to the magmatic and magmatic-fluid-metasomatic Pt types. The monocyclic GPD complexes are low-prospective in respect to magmatic Pt deposit formation. The polycyclic GPD complexes differ in their prospectivity from ore occurrences to unique magmatic-fluid-metasomatic Pt and Pt > Os deposits, as well as deposits of the fluid-metamorphic Pt > Ir type. The genetic types of PGM accumulation imply a multifactor system of ore-forming processes with the participation of platinum-group elements (PGE) in GPD complexes. The genetically different PGM accumulations in GPD complexes should be regarded as self-dependent geological objects of local forecasting. In this connection, it is necessary to renew mineralogical and geochemical criteria for prospecting and exploration of PGM genetic types in GPD complexes as well as their mining conditions.

Keywords

Olivine Ultramafic Rock Platinum Group Element Platinum Group Mineral Platinum Group Element Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrakhantsev, O.V., Batanova, V.G., and Perfil’ev, A.S., Structure of the Galmoenan dunite-clinopyroxenite-gab-bro massif (South Koryakia), Geotektonika, 1991, vol. 25, no. 2, pp. 47–62.Google Scholar
  2. Augé, T., Genna, E., Legendre, L., et al., Primary platinum mineralization in the Nizhny Tagil and Kachkanar ultramafic complexes, the Urals, Russia: a genetic model for PGE concentration in chromite-rich zones, Econ. Geol., 2005, vol. 100, pp. 707–732.Google Scholar
  3. Batanova, V.G. and Astrakhantsev, O.V., Tectonic setting and genesis of zonal mafic-ultramafic plutons in the northern Olyutorka Zone (Koryak Highland), Geotektonika, 1992, vol. 26, no. 2, pp. 87–103.Google Scholar
  4. Batanova, V.G., Pertsev, A.N., Kamenetsky, V.S., et al., Crustal evolution of island-arc ultramafic magma: Galmoenan pyroxenite-dunite plutonic complex, Koryak Highland (Far East Russia), J. Petrol., 2005, vol. 46, no. 7, pp. 1345–1366.CrossRefGoogle Scholar
  5. Betekhtin, A.G., Platina (Platinum), Moscow: AN SSSR, 1935.Google Scholar
  6. Blagorodnye metally. Spravochnik (Noble metals. Handbook), Moscow: Metallurgiya, 1984.Google Scholar
  7. Bogdanovich, A.V., Petrov, S.V., Akkerman, Yu.E., et al., Razrabotka tekhnologii obogashcheniya korennykh platinovykh rud Gal’moenanskogo mestorozhdeniya (Development of primary platinum ore concentration technology at the Galmoenan deposit), St. Petersburg: ZAO Mekhanobr Engineering”, 2005, vol. 1, 2.Google Scholar
  8. Bogdanovich, A.V., Petrov, S.V., Nazimova, Yu.V., et al., Concentration of ore with highly irregular distribution of useful components: a case of platinum ore of the Galmoenan deposit, Tekhnolog. Obogashch., 2010, no. 4, pp. 2–9.Google Scholar
  9. Brodskaya, R.L., Bil’skaya, I.V., and Markovsky, B.A., Ontogenetic analysis of individual olivine grains in ultramafic rocks, Geol. Ore Deposits, 2010, vol. 52, spec. issue 7 (Zapiski Russian Mineral. Soc.), pp. 566–573.CrossRefGoogle Scholar
  10. Chashchukhin, I.S., Votyakov, S.L., Pushkarev, E.V., et al., Oxithermobarometry of ultramafic rocks from the Ural Platinum Belt, Geochem. Int., 2002, vol. 40, no. 8, pp. 762–863.Google Scholar
  11. Dmitrenko, G.G., Mochalov, A.G., Palandzhyan, S.A., and Goryacheva, E.M., Khimicheskie sostavy porodoobrazuyushchikh i aktsessornykh mineralov al’pinotipnykh ul’tramafitov Koryakskogo nagor’ya (Chemical compositions of ore-forming and accessory minerals from Alpine-type ultramafic rocks of the Koryak Highland), Magadan: SVKNII DVNTs AN SSSR, 1985, pts. 1, 2.Google Scholar
  12. Dmitrenko, G.G., Mochalov, A.G., and Bocharov, V.L., Compositional variations of Cr-spinels in Alpine-type ultramafic rocks of the Koryak Highland, Geol. Rudn. Mestorozhd., 1987, vol. 29, no. 2, pp. 38–45.Google Scholar
  13. Dmitrenko, G.G. and Mochalov, A.G., Origin of hydrous silicate inclusions in PGM and Cr-spinels from ultramafic rocks, Dokl. Akad. Nauk SSSR, 1989, vol. 307, no. 5, pp. 1207–1211.Google Scholar
  14. Dmitrenko, G.G., Mochalov, A.G., and Palandzhyan, S.A., Petrologiya i platinonosnost lertsolitovykh massivov Koryakskogo nagor’ya (Petrology and platinum resource potential of lherlolite massifs of the Koryak Highland), Magadan: SVKNII DVO AN SSSR, 1990.Google Scholar
  15. Duparc, L., Platinum and platinum deposits in the Urals, Gorny Zh., 1913, no. 1/2, pp. 282–305.Google Scholar
  16. Genkin, A.D., The sequence and conditions of the formation of PGE minerals in the Nizhny Tagil dunite massif (Russia), Geol. Ore Deposits, 1997, vol. 39, no. 1, pp. 33–39.Google Scholar
  17. Geologiya yuga Koryakskogo Nagor’ya (Geology of the southern Koryak Highland), Moscow: Nauka, 1987.Google Scholar
  18. Geologiya, petrologiya i rudonosnost Konderskogo massiva (Geology, petrology, and ore potential of the Konder massif), Moscow: Nauka, 1994.Google Scholar
  19. The geology, geochemistry, mineralogy, and mineral benefication of platinum-group elements, Québec: Canadian Inst. Mining. Metallurgy, and Petroleum, 2002, Spec. volume 54.Google Scholar
  20. Gornosnfyev, S.S., Crocket, J.H., Mochalov, A.G., and Laajoki, K.V.O., The platinum-group minerals of the Baimka placer deposits, the Aluchin Horst, Russian Far East, Canad. Mineral., 1999, vol. 37, pp. 1117–1129.Google Scholar
  21. Grigor’ev, D.P., Ontogeniya mineralov (Ontogeny of minerals), Lvov: LGU, 1961.Google Scholar
  22. Inostrantsev, A., A lode platinum deposits in the Urals, Trudy St. Petersburg Ob-va Estestv., 1893, vol. 23, pp. 17–27.Google Scholar
  23. Irvine, T.N., Bridget Cove volcanics, Juneau area, Alaska: possible parental magma of Alaskan-type ultramafic complexes, in Carnegie Institution Yearbook Washington, DC, 1973, vol. 72, pp. 478–491.Google Scholar
  24. Ivanov, O.K., Kontsentricheski-zonal’nye piroksenit-dunitovye massivy Urala: mineralogiya, petrologiya, genezis (Concentrically zoned pyroxenite-dunite massifs of the Urals: mineralogy, petrology, and genesis), Yekaterinburg: UrGU, 1997.Google Scholar
  25. Johan, Z., Ohnenstetter, M., Slansky, E., Barron, L.M., and Suppel, D., Platinum mineralization in the Alaskantype intrusive complex near Fifield, New South Wales, Australia, part 1: Platinum-group minerals in clinopyroxenites of the Kelvin Grove prospect, Owendale intrusion, Mineral. Petrol, 1989, vol. 40, pp. 289–309.CrossRefGoogle Scholar
  26. Johan, Z., Slansky, E., and Kelly, D.A., Platinum nuggets from the Kompiam area, Enga province, Papua New Guinea: evidence for an Alaskan-type complex, Mineral. Petrol, 2000, vol. 68, pp. 159–176.CrossRefGoogle Scholar
  27. Karpinsky, A.P., Probable origin of lode platinum deposits in the Urals, Izv. Akad. Nauk SSSR, 1926, vol. 2, pp. 123–170.Google Scholar
  28. Kashin, S.A., Kozak, S.S., Nikolaeva, L.A., and Tikhomirov, K.P., Mineralogicheskie i petrokhimicheskie osobennosti porod platinonosnoi formatsii Srednego Urala i nekotorye zakonomernosti rasprostraneniya korennoi platiny (Mineralogy and petrochemistry of Pt-bearing rocks in the Central Urals and some trends in localization of lode platinum), Moscow: Gostekhizdat, 1956.Google Scholar
  29. Knauf, O.V., U-Pb zircon age of dunite-clinopyroxenite cores of the Kytlym (Central Urals) and Galmoenan (South Koryakia) zonal massifs of the Ural type, Vestnik St. Petersburg Univ., 2009, ser. 7, issue 4, pp. 64–71.Google Scholar
  30. Kochnev-Pervukhov, V.I., Stolyarenko, V.V., Fedorova, S.O., et al., Otsenka perspektiv korennoi platinonosnosti mafitul’tramafitovykh massivov Seinav-Gal’moenanskogo rudnogo uzla (Estimation of prospectivity of lode platinum resource potential of mafic-ultramafic massifs in the Seinav-Galmoenan ore cluster), Moscow: TsNIGRI, 2002.Google Scholar
  31. Koryaksko-Kamchatskii region — novaya platinonosnaya provintsiya Rossii (Koryak-Kamchatka region-a new platinum province in Russia), St. Petersburg: VSEGEI, 2002.Google Scholar
  32. Kostoyanov, A.I., Model Re-Os age of platinum minerals, Geol. Ore Deposits, 1998, vol. 40, no. 6, pp. 485–489.Google Scholar
  33. Ledneva, G.V., Solov’ev, A.V., and Garver, J.I., Massifs of the heterogeneous mafic-ultramafic complex of the Olyutorsky Zone, Koryak Mountains: petrology and geodynamic aspects, Petrology, 2000, vol. 8, no. 5, pp. 428–454.Google Scholar
  34. Malakhov, I.A., Formation conditions of zonal massifs in the Ural Platinum Belt and related platinum mineralization, in Ural’skaya letnyaya mineralogicheskaya shkola-99 pod znakom platiny (Ural summer mineralogical school-99: under sign of platinum), Yekaterinburg, 1999, pp. 101–116.Google Scholar
  35. Marakushev, A.A., Origin of dunite, Izv. Vyssh. Uchebn. Zaved., Geol. Razvedka, 1987, no. 7, pp. 21–35.Google Scholar
  36. Mochalov, A.G., Mineralogy of PGE in the Alpine-type ultramafic rocks, Cand. Sci. (Geol.-Mineral.) Dissertation, Leningrad: LGI, 1986.Google Scholar
  37. Mochalov, A.G., Mineral series of mineralogical-geochemical types of PGE placers: principles of local forecasting, in Geologiya i genezis mestorozhdenii platinovykh metallov (Geology and genesis of PGM deposits), Moscow: Nauka, 1994, pp. 225–235.Google Scholar
  38. Mochalov, A.G., PGM placers, in Rossypnye mestorozhdeniya Rossii i drugikh stran SNG (Placer deposits of Russia and other CIS countries), Moscow: Nauchnyi mir, 1997, pp. 127–165.Google Scholar
  39. Mochalov, A.G., Genesis of placer-forming PGM, in Ural’skaya letnyaya mineralogicheskaya shkola-99 pod znakom platiny (Ural summer mineralogical school-99: under sign of platinum), Yekaterinburg, 1999, pp. 166–184.Google Scholar
  40. Mochalov, A.G., Platinum heavy concentrates in placers of the Russian Far East Doctoral (Geol.-Mineral.) Dissertation, Moscow: IGEM RAN, 2001.Google Scholar
  41. Mochalov, A.G., Placer-forming PGM in the Russian Far East, in Rudnye mestorozhdeniya i protsessy rudoobrazovaniya (Ore deposits and ore formation), Moscow: IGEM RAN, 2005, pp. 367–386.Google Scholar
  42. Mochalov, A.G., New osmium-platinum mineralogicalgeochemical type of zoned gabbro-pyroxenite-dunite massifs from the southern Koryak Highland, Russia, Dokl. Earth Sci., 2009a, vol. 426, no. 4, pp. 615–619.CrossRefGoogle Scholar
  43. Mochalov, A.G., Evolution of PGM in plutonic gabbropyroxenite-dunite complexes of the Koryak Highland, Russia, in Ul’trabazit-bazitovye kompleksy skladchatykh oblastei i svyazannye s nimi mestorozhdeniya (Ultramaficmafic complexes of fold regions and related deposits), Yekaterinburg: IGG UrO RAN, 2009b, vol. 2, pp. 57–60.Google Scholar
  44. Mochalov, A.G., Mineralogical criteria of PGM deposits related to plutonic gabbro-pyroxenite-dunite complexes of the Koryak Highland, in Rossypi i mestorozhdeniya kor vyvetrivaniya: sovremennye problemy issledovaniya i osvoeniya (Placers and deposits in weathering mantles: current problems of exploration and development), Novosibirsk: Apel’sin, 2010a, pp. 468–472.Google Scholar
  45. Mochalov, A.G., Evolution of placer-forming plutonic gabbro-pyroxenite-dunite complexes, in Novye gorizonty v izuchenii protsessov magmo- i rudoobrazovaniya (New perspective in study of magma and ore formation), Moscow: IGEM RAN, 2010b, pp. 281–282.Google Scholar
  46. Mochalov, A.G., A model of evolution of PGM genetic types related to plutonic gabbro-pyroxenite-dunite complexes of the Koryak Highland, Russia, in Ul’trabazit-bazitovye kompleksy skladchatykh oblastei i ikh minerageniya: materialy IV mezhdunarodnoi konferentsii i III molodezhnoi shkoly-seminara (Proceedings of the 4th intern. conference and the 3rd youth school-seminar on ultramafic-mafic complexes in fold regions and related minerageny), Ulan-Ude: EKOS, 2012, pp. 124–129.Google Scholar
  47. Mochalov, A.G. and Bortnikov, N.S., New criteria of the genesis of platinum group minerals in intergrowths with pyroxenes from zonal gabbro-pyroxenite-dunite massifs in the South Koryak Highland (Russia), Dokl. Earth Sci., 2008, vol. 421A, no. 6, pp. 941–945.CrossRefGoogle Scholar
  48. Mochalov, A.G. and Dmitrenko, G.G., Some genetic aspects of PGM formation, in Genezis rudnykh formatsii i prakticheskoe znachenie rudnoformatsionnogo analiza na Severo-Vostoke SSSR (Genesis of ore deposits and practical implications of their typification in the Northeast of the USSR), Magadan: SVKNII DVO AN SSSR, 1990a, pp. 117–123.Google Scholar
  49. Mochalov, A.G. and Dmitrenko, G.G., PGM of Alpine-type ultramafic rocks, in Petrologiya giperbazitov i bazitov (Petrology of ultramafic and mafic rocks), Novosibirsk: Nauka, 1990b, pp. 144–167.Google Scholar
  50. Mochalov, A.G. and Khoroshilova, T.S., The Konder alluvial placer of platinum metals, in International platinum, Athens: Theophrastus Publ., 1998, pp. 206–220.Google Scholar
  51. Mochalov, A.G. and Pertsev, A.N., GPM-pyroxene intergrowths in plutonic gabbro-pyroxenite-dunite complexes of the Koryak Highland, Russia, Rudy Met., 2012, no. 6, pp. 67–74.Google Scholar
  52. Mochalov, A.G. and Rudashevsky, N.S., A new type of PGM mineralization, Dokl. Akad. Nauk SSSR, 1982, vol. 267, no. 4, pp. 935–939.Google Scholar
  53. Mochalov, A.G., Tolkachev, M.D., Polekhovsky, Yu.S., and Goryacheva, E.V., Bortnikovite, Pd4Cu3Zn, a new mineral species from the unique Konder placer deposit, Khabarovsk Krai, Russia, Geol.Ore Deposits, 2007, vol. 49, no. 4, pp. 318–327.CrossRefGoogle Scholar
  54. Mochalov, A.G., Vlasov, E.A., and Pertsev, A.N., Multistage redistribution of ore components, including PGE in dunites of zoned massifs (Galmoenan, the Koryak Highland), in Ural’skaya letnyaya mineralogicheskaya shkola-2000 pod znakom ural’skikh samotsvetov (Ural summer mineralogical school-2000: under sign of Ural colored stones), Yekaterinburg, 2000, pp. 359–363.Google Scholar
  55. Mochalov, A.G., Zaitsev, V.P., Pertsev, A.N., and Vlasov, E.A., Mineralogy and genesis of alluvial platinum from placers of the southern Koryak Highland (Russia), Geol. Ore Deposits, 2002a, vol. 44, no. 3, pp. 188–212.Google Scholar
  56. Mochalov, A.G., Zaitsev, V.P., Nazimova, Yu.V., et al., Variations in the composition of alluvial platinum from placers of the southern Koryak Highland (Russia), Geol. Ore Deposits, 2002b, vol. 44, no. 6, pp. 486–498.Google Scholar
  57. Mochalov, A.G., Zhernovsky, I.V., and Dmitrenko, G.G., Composition and abundance of native platinum and iron minerals in ultramafic rocks, Geol. Rudn. Mestorozhd., 1988, vol. 30, no. 5, pp. 47–58.Google Scholar
  58. Nazimova, Yu.V., Zaitsev, V.P., and Mochalov, A.G., Platinum group minerals of the Galmoenan gabbro-pyroxenite-dunite massif in the southern part of the Koryak Highland (Russia), Geol. Ore Deposits, 2003, vol. 45, no. 6, pp. 481–499.Google Scholar
  59. Nazimova, Yu.V., Zaitsev, V.P., and Petrov, S.V., The Galmoenan massif, Kamchatka, Russia: geology, PGE mineralization, applied mineralogy, and beneficiation, Can. Mineral., 2011, vol. 49, pp. 1433–1453.CrossRefGoogle Scholar
  60. Nixon, G.T., Cabri, L.J., and Laflamme, J.H.G., Platinum-group element mineralization in lode and placer deposits associated with the Tulameen Alaskan-type complex, British Columbia, Can. Mineral., 1990, vol. 28, no. 3, pp. 503–535.Google Scholar
  61. Osipenko, A.B., Sidorov, E.G., and Kostoyanov, A.I., Petrologic aspects of chromite mineralization hosted in various ultramafic rocks, in Materialy Mezhdunarodnogo petrograficheskogo soveshchaniya (Proceedings of Intern. Petrographic Conference), Apatity: KNTs RAN, 2005, vol. 3, pp. 214–216.Google Scholar
  62. Pertsev, A.N., Petrology of plutonic mafic-ultramafic complexes in acrive regions of ocean-continent transition, Doctoral (Geol.-Mineral.) Dissertation, Moscow: IGEM RAN, 2004.Google Scholar
  63. Pertsev, A.N., Mochalov, A.G., and Astrakhantsev, O.V., The role of multilevel crystallization in the origin of islandarc Pt-bearing plutons: the Galmoenan massif, South Koryakia, in Petrografiya na rubezhe XXI veka: itogi I perspektivy (Petrography at the turn of the 21st century: results and perspective), Syktyvkar: Inst. Geol., Komi Sci. Center, 2000, vol. 3, pp. 287–289/Google Scholar
  64. Pertsev, A.N., Mochalov, A.G., Zaitsev, V.P., et al., Effect of synmagmatic recrystallization of dunite on mobilization of ore components in the Galmoenan zoned massif, the Koryak Highland, in Ural’skaya letnyaya mineralogicheskaya shkola-99 pod znakom platiny (Ural summer mineralogical school-99: under sign of platinum), Yekaterinburg, 1999, pp. 133–145.Google Scholar
  65. Petrov, S.V., Nazimova, Yu.V., and Bogdanovich, A.V., Applied PGE mineralogy and ore beneficiation of the Galmoenan deposit, Northern Kamchatka, in 11th Intern. Platinum Symposium, June 21–24, 2010, Ontario Geol. Survey, 2010, Miscellaneous release-data, p. 269.Google Scholar
  66. Podlipsky, M.Yu., Mineralogy of ferroplatinum assemblage in placers, Cand. Sci. (Geol.-Mineral.) Dissertation, Novosibirsk: IG SO RAN, 1999.Google Scholar
  67. Pushkarev, E.V., Anikina, E.V., Garuti, G., and Zaccarini, F., Cr-Pt mineralization of the Nizhny Tagil type in the Urals: structural and compositional characterization and genetic problems, Litosfera, 2007, no. 3, pp. 28–65.Google Scholar
  68. Rudashevsky, N.S., Mochalov, A.G., and Zhdanov, V.V., Mineral parageneses of platinoids in ultramafic rocks, Zap. VMO, 1983, no. 1, pp. 3–13.Google Scholar
  69. Rudashevsky, N.S., A new model of PGE differentiation in the lithosphere, Zap. VMO 1984, no. 5, pp. 521–539.Google Scholar
  70. Shmelev, V.R. and Filippova, S.S., Structure and formation mechanism of the Nizhny Tagil dunite-clinopyroxenite massif, Central Urals, Geotectonics, 2010, vol. 44, no. 4, pp. 65–86.CrossRefGoogle Scholar
  71. Sidorov, E.G., PGE resource potential of mafic-ultramafic complexes of the Koryakia-Kamchatka region, Doctoral (Geol.-Mineral.) Dissertation, Vladivostok: DGI DVO RAN, 2009.Google Scholar
  72. Tolmacheva, E.V., Genesis of dunites in zoned dunite-clinopyroxenite massifs of the Koryakia-Kamchatka Platinum Belt and nature of its platinum potential from termobarometric data, in Geologiya, genezis i voprosy osvoeniya kompleksnykh mestorozhdenii blagorodnykh metallov (Geology, genesis, and development of complex noble-metal deposits), Moscow: Svyaz-print, 2002, pp. 80–82.Google Scholar
  73. Tolstykh, N.D., Mineral assemblages of platinum placers and correlation with their lode sources, Doctoral (Geol.-Mineral.) Dissertation, Novosibirsk: IG SO RAN, 2005.Google Scholar
  74. Ukhanov, A.V., Mochalov, A.G., and Ustinov, V.I., Fluid-driven PGE redistribution in the alkaline-ultrabasic Konder massif: oxygen isotope data, Geochem. Int., 1997, vol. 35, no. 4, pp. 386–392.Google Scholar
  75. Vlasov, E.A. and Mochalov, A.G., Lode sources of platinum heavy concentrate in placers on Feklistov Island, Shantar Archipelago, Russia, Vestnik MGU, Geologiya, 2002, no. 5, pp. 34–39.Google Scholar
  76. Volchenko, Yu.A., Ivanov, K.S., Koroteev, V.A., and Augé, T., Structural and compositional evolution of rock complexes in the Ural Platinum Belt during formation of chromite-platinum deposits of the Ural type, Litosfera, 2007, no. 3, pp. 73–101.Google Scholar
  77. Vysotsky, N.K., Platinum deposits of the Is and Nizhny Tagil districts in the Urals, Trudy Geolkom., Novaya seriya, 1913, issue 62.Google Scholar
  78. Vysotsky, N.K., Platina i raiony ee dobychi (Platinum and areas of its mining), Petrograd: KEPS AN SSSR, 1923, 1925, 1933, parts 2–5.Google Scholar
  79. Zaitsev, V.P., Study and estimation of lode platinum mineralization in zonal ultramafic massifs using large-volume bulk sampling, Gorny Vestnik Kamchatki, 2011, issue 2 (16), pp. 69–78.Google Scholar
  80. Zavaritsky, A.N., Lode platinum deposits in the Urals, in Materialy po obshchei i prikladnoi geologii (General and Applied Geology), Leningrad: Geolkom, 1928, issue 108.Google Scholar
  81. Zhernovsky, I.V. and Mochalov, A.G., Genetic crystallography of hexagonal solid solutions of osmium, ruthenium, and iridium as an indicator of the conditions of their formation, Geol. Ore Deposits, 1999, vol. 41, no. 6, pp. 495–509.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations