Geology of Ore Deposits

, Volume 53, Issue 7, pp 528–542 | Cite as

Optimization of the garnet-biotite geothermometer: I. Temperature trends

  • Yu. L. Gulbin


With the purpose to improve the garnet-biotite geothermometer, the published data on the interaction parameters have been compared for the components of garnet and biotite solid solutions. On the basis of the reference metapelitic series, it has been shown that the temperatures determined using various calibration equations for garnets enriched in Ca and Mn are systematically over- or underestimated. The difference between the estimated and expected temperatures may be as great as many tens of degrees.


Olivine Cordierite Berman Exchange Equilibrium Almandine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albee, A.L., Distribution of Fe, Mg and Mn between Garnet and Biotite in Natural Mineral Assemblages, J. Geol., 1965, vol. 73, pp. 155–164.CrossRefGoogle Scholar
  2. Aranovich, L.Ya., Biotite-Garnet Equilibria in Metapelites. I. Thermodynamics of Solid Solutions and End Member Reactions, in Ocherki fiziko-khimicheskoi petrologii (Essays of Physicochemical Petrology), Moscow: Nauka, 1983, issue 11, pp. 121–136.Google Scholar
  3. Aranovich, L.Ya., Lavrent’eva, I.V., and Kosyakova, N.A., Biotite-Garnet and Biotite-Orthopyroxene Geothermometers: Calibration with Allowance for Variable Al content in Biotite, Geokhimiya, 1988, vol. 26. no. 5, pp. 668–676.Google Scholar
  4. Belevtsev, R.Ya., Dudko, V.S., and Slipchenko, B.V., Effect of Mn and Ca an Garnet on Its equilibrium with Biotite, Miner. Zh., 1981, no. 2, pp. 90–97.Google Scholar
  5. Berman, R.G., Mixing Properties of Ca-Mg-Mn Garnets, Am. Mineral., 1990, vol. 75, pp. 328–344.Google Scholar
  6. Berman, R.G. and Aranovich, L.Ya., Optimized Standard State and Solution Properties of Minerals, Contrib. Miner. Petrol., 1996, vol. 126, pp. 1–24.CrossRefGoogle Scholar
  7. Bhattacharya, A., Mohanty, L., Maji, A., Sen, S.K., and Raith, M., Non-Ideal Mixing in the Phlogopite-Annite Binary: Constraints from Experimental Data on Mg-Fe Partitioning and a Reformulation of the Biotite-Garnet Geothermometer, Contrib. Mineral. Petrol., 1992, vol. 111, pp. 87–93.CrossRefGoogle Scholar
  8. Chipera, S. and Perkins, D., Evaluation of Biotite-Garnet Geothermometers: Application to the English River Subprovince, Ontario, Contrib. Mineral. Petrol., 1988, vol. 98, pp. 40–48.CrossRefGoogle Scholar
  9. Cressey, G., Schmid, R., and Wood, B.J., Thermodynamic Properties of Almandine-Grossular Garnet Solid Solutions, Contrib. Mineral. Petrol., 1978, vol. 67, pp. 397–404.CrossRefGoogle Scholar
  10. Dahl, P.S., The Thermal-Compositional Dependence of Fe2+-Mg2+ Distributions between Coexisting Garnet and Clinopyroxene: Applications to Geothermometry, Am. Mineral., 1980, vol. 65, pp. 852–866.Google Scholar
  11. Dasgupta, S., Sengupta, P., Guha, D., and Fukuoka, M., A Refined Garnet-Biotite Fe-Mg Exchange Geothermometer and Its Application in Amphibolites and Granulites, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 130–137.CrossRefGoogle Scholar
  12. Ellis, D.J. and Green, D.H., An Experimental Study of the Effect of Ca Upon Garnet-Clinopyroxene Fe-Mg Exchange Equilibria, Contrib. Mineral. Petrol., 1979, vol. 71, pp. 13–22.CrossRefGoogle Scholar
  13. Ferry, J.M., A Comparative Study of Geothermometers and Geobarometers in Pelitic Schists from South-Central Maine, Am. Mineral., 1980, vol. 65, pp. 720–732.Google Scholar
  14. Ferry, J.M. and Spear, F.S., Experimental Calibration of the Partitioning of Fe and Mg between Biotite and Garnet, Contrib. Mineral. Petrol., 1978, vol. 66, pp. 113–117.CrossRefGoogle Scholar
  15. Frost, M.J., Metamorphic Grade and Iron-Magnesium Distribution between Coexisting Garnet-Biotite and Garnet-Hornblende, Geol. Mag., 1962, vol. 99, pp. 427–438.CrossRefGoogle Scholar
  16. Ganguly, J., Garnet and Clinopyroxene Solid Solutions, and Geothermometry Based on Fe-Mg Distribution Coefficient, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 101–129.CrossRefGoogle Scholar
  17. Ganguly, J., Cheng, W., and Tirone, M., Thermodynamics of Aluminosilicate Garnet Solid Solution: New Experimental Data, An Optimized Model, and Thermometric Applications, Contrib. Mineral. Petrol., 1996, vol. 126, pp. 137–151.CrossRefGoogle Scholar
  18. Ganguly, J. and Kennedy, G.C., The Energetics of Natural Garnet Solid Solution, Contrib. Mineral. Petrol., 1974, vol. 48, pp. 137–148.CrossRefGoogle Scholar
  19. Ganguly, J. and Saxena, S.K., Mixing Properties of Aluminosilicate Garnets: Constraints from Natural and Experimental Data, and Applications to Geothermobarometry, Am. Mineral., 1984, vol. 69, pp. 88–97.Google Scholar
  20. Geiger, C.A., Thermodynamics of (Fe2+,Mn2+,Mg,Ca)3Al3O12 Garnet: a Review and Analysis, Mineral. Petrol., 1999, vol. 66, pp. 271–299.CrossRefGoogle Scholar
  21. Geiger, C.A., Newton, R.C., and Kleppa, O.J., Enthalpy of Mixing of Synthetic Almandine-Grossular and Almandine-Pyrope Garnets from High-Temperature Solution Calorimetry, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 1755–1763.CrossRefGoogle Scholar
  22. Gessmann, C.K., Spiering, B., and Raith, M., Experimental Study of the Fe-Mg Exchange between Garnet and Biotite: Constraints on the Mixing Behavior and Analysis of the Cation-Exchange Mechanisms, Am. Mineral., 1997, vol. 82, pp. 1225–1240.Google Scholar
  23. Glebovitsky, V.A., Drugova, G.M., Ekimov, S.P., et al., Termoi barometriya metamorficheskikh porod (Thermo- and Barometry of Metamorphic Rocks, Glebovitsky, V.A., Ed., Leningrad: Nauka, 1977.Google Scholar
  24. Goldman, D.S. and Albee, A.L., Correlation of Mg/Fe Partitioning between Garnet and Biotite with 18O/16O Partitioning between Quartz and Magnetite, Am. J. Sci., 1977, vol. 277, pp. 750–767.CrossRefGoogle Scholar
  25. Hackler, R.T. and Wood, B.J., Experimental Determination of Fe and Mg Exchange between Garnet and Olivine and Estimation of Fe-Mg Mixing Properties in Garnet, Am. Mineral., 1989, vol. 74, pp. 994–999.Google Scholar
  26. Haselton, H.T. and Newton, R.C., Thermodynamics of Pyrope-Grossular Garnets and Their Stabilities at High Temperatures and Pressures, J. Geophys. Res., 1980, vol. 85, pp. 6973–6982.CrossRefGoogle Scholar
  27. Hoinkes, G., Effect of Grossular Content in Garnet on the Partitioning of Fe and Mg between Garnet and Biotite, Contrib. Mineral. Petrol., 1986, vol. 92, pp. 393–399.CrossRefGoogle Scholar
  28. Holdaway, M.J., Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer, Am. Mineral., 2000, vol. 85, pp. 881–892.Google Scholar
  29. Holdaway, M.J., Dutrow, B.L., and Hinton, R.W., Devonian and Carboniferous Metamorphism in West-Central Maine: The Muscovite-Almandine Geobarometer and the Staurolite Problem Revisited, Am. Mineral., 1988, vol. 73, pp. 20–47.Google Scholar
  30. Holdaway, M.J., Mukhopadhyay, B., Dyar, M.D., Guidotti, C.V., and Dutrow, B.L., Garnet-Biotite Geothermometry Revisited: New Margules Parameters and a Natural Specimen Data Set from Maine, Am. Mineral., 1997, vol. 82, pp. 582–595.Google Scholar
  31. Hollister, L.S., Contact Metamorphism in the Kwoiek Area of British Columbia: An End Member of the Metamorphic Process, Geology, 1969, vol. 80, pp. 2465–2494.Google Scholar
  32. Indares, A. and Manignole, J., Biotite-Garnet Geothermometry in the Granulite Facies: The Influence of Ti and Al in Biotite, Am. Mineral., 1985, vol. 70, pp. 272–278.Google Scholar
  33. Kaneko, Y. and Miyano, T., Recalibration of Mutually Consistent Garnet-Biotite and Garnet-Cordierite Geothermometers, Lithos, 2004, vol. 73, pp. 255–269.CrossRefGoogle Scholar
  34. Kawasaki, T. and Matsui, Y., Thermodynamic Analyses of Equilibria Involving Olivine, Orthopyroxene and Garnet, Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 1661–1679.CrossRefGoogle Scholar
  35. Kleemann, U. and Reinhardt, J., Garnet-Biotite Thermometry Revisited: The Effect of AlVI and Ti in Biotite, Eur. J. Mineral., 1994, vol. 6, pp. 925–941.Google Scholar
  36. Mukhopadhyay, B., Holdaway, M.J., and Koziol, A.M., A Statistical Model of Thermodynamic Mixing Properties of Ca-Mg-Fe2+ Garnets, Am. Mineral., 1997, vol. 82, pp. 165–181.Google Scholar
  37. Newton, R.C., Charlu, T.V., and Kleppa, O.J., Thermochemistry of High Pressure Garnets and Clinopyroxenes in the System CaO-MgO-Al2O3-SiO2, Geochim. Cosmochim. Acta, 1977, vol. 41, pp. 369–377.CrossRefGoogle Scholar
  38. Newton, R.C. and Haselton, H.T., Thermodynamios of the Garnet-Plagioclase-Al2SiO5-Quartz Geobarometer, in Thermodynamics of Minerals and Melts, Newton, R.C. et al., Eds., Berlin: Springer, 1981, pp. 131–147.CrossRefGoogle Scholar
  39. Nikitina, L.P., Refinement of Garnet-Biotite Geothermometer: Development of Mutually Coordinated Geological Thermometers and Barometers, Zap. Vseross. Mineral. Ob-va, 1991, vol. 120, no. 1, pp. 18–31.Google Scholar
  40. Nikitina, L.P. and Krivovichev, V.G., Mezhfazovye ravnovesiya v mineral’nykh sistemakh i geotermobarometriya (Interphase Equilibria in Mineral Systems and Geothermobarometry), St. Petersburg, 2003.Google Scholar
  41. O’Neill, H.St.C., Pownceby, M.I., and Wall, V.J., Activity-Composition Relations in FeTiO3-MnTiO3 Ilmenite Solid Solutions from EMF Measurements at 1050–1300 K, Contrib. Mineral. Petrol., 1989, vol. 103, pp. 216–222.CrossRefGoogle Scholar
  42. O’Neill, H.St.C. and Wood, B.J., An Experimental Study of Fe-Mg Partitioning Between Garnet and Olivine and Its Calibration As a Geothermometer, Contrib. Miner. Pertrol., 1979, vol. 70, pp. 59–70.CrossRefGoogle Scholar
  43. Perchuk, L.L., Mutual Coordination of Some Fe-Mg Geothermometers on the Basis of Nernst Law: A Revision, Geokhimiya, 1989, vol. 27, no. 5, pp. 611–622.Google Scholar
  44. Perchuk, L.L., Lavrent’eva, I.V., Aranovich, L.Ya., et al., Biotit-granat-kordieritovye ravnovesiya i evolyutsiya metamorfizma (Biotite-Garnet-Cordierite Equilibria and Metamorphic Evolution), Moscow: Nauka, 1983.Google Scholar
  45. Pownceby, M.I., Wall, V.J., and O’Neill, H.St.C., Fe-Mn Partitioning Between Garnet and Ilmenite: Experimental Calibration and Applications, Contrib. Miner. Pertol., 1987, vol. 97, pp. 116–126.CrossRefGoogle Scholar
  46. Sack, R.O. and Ghiorso, M.S., Importance of Considerations of Mixing Properties in Establishing An Internally Consistent Thermodynamic Database: Thermochemistry of Minerals in System Mg2SiO4-Fe2SiO4-SiO2, Contrib. Miner. Pertrol., 1989, vol. 102, pp. 41–68.CrossRefGoogle Scholar
  47. Sen, S.K. and Chakraborty, K.R., Magnesium-Iron Exchange Equilibrium in Garnet-Biotite and Metamorphic Grade, Neues Jahrb. Miner. Abh, 1968, vol. 108, pp. 181–207.Google Scholar
  48. Sengupta, P., Dasgupta, S., Bhattacharya, P.K., and Hariya, Y., Mixing Behavior in Quaternary Garnet Solid Solution and An Extended Ellis and Green Garnet-Clinopyroxene Geothermometer, Contrib. Miner. Pertrol., 1989, vol. 103, pp. 223–227.CrossRefGoogle Scholar
  49. Thompson, A.B., Mineral Reactions in Pelitic Rocks: II. Calculation of Some P-T-X(Fe-Mg) Phase Reactions, Am. J. Sci., 1976, vol. 276, pp. 425–454.CrossRefGoogle Scholar
  50. Williams, M.L. and Grambling, J.A., Manganese, Ferric Iron and the Equilibrium between Garnet and Biotite, Am. Mineral., 1990, vol. 75, pp. 886–908.Google Scholar
  51. Wood, B.J. and Kleppa, O.J., Thermochemistry of Forsterite-Fayalite Olivine Solutions, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 529–534.CrossRefGoogle Scholar
  52. Wu, C.M. and Cheng, B.-H., Valid Garnet-Biotite (GB) Geothermometry and Garnet-Aluminum Silicate-Plagioclase-Quartz (GASP) Geobarometry in Metapelitic Rocks, Lithos, 2006, vol. 89, pp. 1–23.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.St. Petersburg State Mining UniversitySt. PetersburgRussia

Personalised recommendations