Geology of Ore Deposits

, Volume 52, Issue 8, pp 701–710 | Cite as

Thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. II. Systems M1, M2//SO 4 2− -H2O (M1, M2 = Fe2+, Fe3+, Cu2+, Zn2+, Pb2+, Ni2+, Co2+, H+) at 25°C

  • M. V. Charykova
  • V. G. Krivovichev
  • W. Depmeier
Article

Abstract

High toxicity of arsenic and selenium makes it important to analyze conditions, under which sulfates, arsenates, and selenites replace sulfides, arsenides, and selenides in the oxidation zones of sulfide ore deposits and in weathered technogenic waste. Published experimental data have been summarized for solubility in ternary systems containing Fe, Cu, Zn, Pb, Ni, and Co sulfates. Due to high solubility of solid phases, the thermodynamic description of solutions was carried out using the Pitzer equations; the necessary parameters were found in the literature or calculated in this article. The applied model was preliminarily verified by experimentally obtained diagrams of solubility. A database was compiled for quantitative thermodynamic modeling of mineral equilibria in most ternary and four-component subsystems of the Fe2+, Cu2+, Zn2+, Ni2+, Co2+//SO 4 2− -H2O system. The lack of experimental data for the systems containing Fe(III) sulfate does not allow calculating necessary parameters of its interaction with other sulfates and conducting calculations in multicomponent systems without simplifications and additional assumptions. Solubility diagrams are considered for the following systems: FeSO4-H2SO4-H2O, NiSO4-H2SO4-H2O, CuSO4-H2SO4-H2O, ZnSO4-H2SO4-H2O, CoSO4-H2SO4-H2O, FeSO4-Fe2(SO4)3-H2O, CoSO4-NiSO4-H2O, ZnSO4NiSO4-H2O, FeSO4-CoSO4-H2O, FeSO4-NiSO4-H2O, FeSO4-CuSO4-H2O, CoSO4-CuSO4-H2O, NiSO4-CuSO4-H2O, and ZnSO4-CoSO4-H2O. For some of these systems, equilibrium phase diagrams are calculated in this article.

Keywords

Selenite Crystal Hydrate Oxidation Zone Solubility Diagram Solid Solution Series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addlestone, J.A., The System Nickel Sulfate-Sulfuric Acid-Water at 25 and 0°C, J. Phys. Chem., 1938, vol. 42, pp. 437–440.CrossRefGoogle Scholar
  2. Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C., Handbook of Mineralogy, vol.5 Borates, Carbonates, Sulfates, Tuscan: Mineral Data Publishing, 2003.Google Scholar
  3. Baes, C.F.., Reardon, E.J., and Moyer, B.A., Ion Interaction Model Applied to Equilibria in the CuSO4-H2SO4-H2O System, J. Phys. Chem., 1993, vol. 97, pp. 12343–12348.CrossRefGoogle Scholar
  4. Balarew, C.C. and Karaivanova, V., Effect of Isodimorphously Included Co(II), Fe(II) and Cu(II) Ions in the Crystal Structures of ZnSO4 · 7H2O and MgSO4 · 7H2O, in Industrial Crystallization, Plenum Publ. Corp.: New York, 1976a, pp. 239–243.Google Scholar
  5. Balarew, C.C. and Karaivanova, V., Über eine Möglichkeit der Gewinnung reiner von Isodimorphen Einschlussen freier Kristallhydrate vom Typ MSO 4 · NH 2 O, J. Inorg. Allg. Chem., 1976b, vol. 422, pp. 173–178.CrossRefGoogle Scholar
  6. Balarew, C.C. and Karaivanova, V., On the Isodimorphous Cocrystallization in the Systems FeSO4-CdSO4-H2O and FeSO4-CuSO4-H2O at 25°C, Compt. Rend. Acad. Bulg. Sci, 1975, vol. 28, pp. 1497–1500.Google Scholar
  7. Balarew, C.C., Karaivanova, V., and Oikova, T., Beitrag zur Untersuchung der isomorphen und isodimorphen Einschlusse in Kristallsaltzen. III. Untersuchung der Systeme Zinksulfat-Kobaltsulfat-Wasser und Zinksulfat-Nickelsulfat-Wasser bei 25.0°C, Comm. Depart. Chem. Bulg. Acad. Sci, 1970, vol. 3, pp. 637–643.Google Scholar
  8. Balarew, C. and Oikova, T., Thermodynamische Untersuchung des Systems Zinksulfat-Nickelsulfat-Wasser bei 25.0°C, Comm. Depart. Chem. Bulg. Acad. Sci, 1975, vol. 8, pp. 640–648.Google Scholar
  9. Cameron, F., Ferric Sulfate in Aqueous Solutions of Other Sulfates, J. Phys. Chem., 1936, vol. 40, pp. 689–696.CrossRefGoogle Scholar
  10. Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Selenites and Sulfates: the System Ni2+, Co2+ // SeO32− SO42−-H2O—Thermodynamic Analysis and Geological Applications, Zap. Ross. Mineral-O-va, 2007, Spec. Issue, Crystallogenesis and Mineralogy, no. 7, pp. 246–266.Google Scholar
  11. Charykova, M.V., Krivovichev, V.G., and Depmeier, W., Thermodynamics of Arsenates, Selenites, and Sulfates in Oxidation Zone of Sulfide Ores. I. Thermodynamic Constants at Ambient Conditions Zap. Ross. Mineral-O-va, 2009, vol. 137, no. 6, pp. 105–117 [Geol. Ore Deposits (Engl. Transl.), 2010, Vol. 52 (Spec. Issue 8, Zapiski Russian Mineral. Soc.), pp. 759–770.Google Scholar
  12. Christov, C., Pitzer Ion-Interaction Parameters for Fe(II) and Fe(III) in the Quinary {Na + K + Mg + Cl + SO4 + H2O} System at 298.15 K, J. Chem. Thermodyn., 2004, vol. 36, pp. 223–235.CrossRefGoogle Scholar
  13. Downes, C.J. and Pitzer, R.S., Thermodynamics of Electrolytes. Binary Mixtures Formed from Aqueous NaCl, Na2SO4, CuCl2, and CuSO4 at 25°C, J. Solution Chem., 1976, vol. 5, pp. 389–398.CrossRefGoogle Scholar
  14. Filippov, V.K. and Nokhrin, V.I., Li, Me Systems // SO4-H2O(Me-Mg, Ni, Zn) at 25°C, Zh. Neorg. Khim., 1985a, vol. 30, no. 2, pp. 501–505.Google Scholar
  15. Filippov, V.K. and Nokhrin, V.I., Li, Me Systems // SO4H2O(Me-Mn, Co, Cu) at 25°C, Zh. Neorg. Khim., 1985b, vol. 30, no. 2, pp. 513–516.Google Scholar
  16. Guerra, E. and Bestetti, M., Physicochemical Properties of ZnSO4-H2SO4-H2O Electrolytes of Relevance to Zinc Electrowinning, J. Chem. Eng. Data, 2006, vol. 51, pp. 1491–1497.CrossRefGoogle Scholar
  17. Jambor, J.L., Nordstrom, D.K., and Alpers, C.N., Metal-Sulfate Salts from Sulfide Mineral Oxidation, Rev. Mineral. Geochem., 2000, vol. 40, pp. 305–350.Google Scholar
  18. Kogan, V.B., Ogorodnikov, S.K., and Kafarov, V.V., Spravochnik po rastvorimosti. Troinye i mnogokomponentnye sistemy, obrazovannye neorganicheskimi veshchestvami (Handbook for Solubility. Ternary and Multicomponent Systems Composed of Inorganic Substances), Leningrad: Nauka, 1979.Google Scholar
  19. Marion, G.M., Kargel, J.S., and Catling, D.C., Modeling Ferrous-Ferric Iron Chemistry with Application to Martian Surface Geochemistry, Geochim. Cosmochin. Acta, 2008, vol. 73, pp. 242–266.CrossRefGoogle Scholar
  20. Paige, C.R., Kornicker, W.A., Heleman, O.E., and Snodgrass, W.J., Modeling Solution Equilibria for Uranium Ore Processing: the PbSO4-H2SO4-H2O and PbSO4-Na2SO4-H2O Systems, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 1165–1173.CrossRefGoogle Scholar
  21. Pitzer, K.S., Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations, J. Phys. Chem., 1973, vol. 77, pp. 268–277.CrossRefGoogle Scholar
  22. Proskurina, O.V., Mal’tseva, E.S., Rumyantsev, A.V., and Puchkov, L.V., A Thermodynamic Study of the Ni2+, Me2+ // SO42−-H2O (Me = Mg, Zn) Systems at 25°C, Zh. Fyz. Khim., 2001, vol. 75, pp. 407–413 [Russ. J. Phys. Chem. (Engl. Transl.), vol. 75, no. 3, pp. 343–348].Google Scholar
  23. Reardon, E.J. and Beckie, R.D., Modeling Chemical Equilibria of Acid Mine Drainage: The FeSO4-H2SO4-H2O System, Geochim. Cosmochim. Acta, 1987, vol. 51, pp. 2355–2368.CrossRefGoogle Scholar
  24. Reardon, E.J., Ion Interaction Model Applied to Equilibria in the NiSO4-H2SO4-H2O System, J. Phys. Chem., 1989, vol. 93, pp. 4630–4636.CrossRefGoogle Scholar
  25. Rumyantsev, A.V., Thermodynamics of Phase Equilibria in Water-Salt Systems Containing Solid Solutions As Exemplified in the Five-Component Mutual System K+, Co2+, Ni2+ // Cl, SO42−-H2O at 25°C, Cand. Sc. (Chem.) Dissertaion, St. Petersburg: St. Peterburg State Univ, 1995.Google Scholar
  26. Rumyantsev, A.V., Hagemann, S., and Moog, H.C., Isopiestic Investigation of the Systems Fe2(SO4)3-H2SO4-H2O, FeCl3-H2O, and Fe(III)-(Na,K,Mg,Ca)Cln-H2O at 298.15 K, J. Phys. Chem., 2004, vol. 218, pp. 1089–1127.Google Scholar
  27. Tosca, N.J. and McLennan, S.M., Application of the Pitzer Ion Interaction Model to Isopiestic Data for the Fe2(SO4)3-H2SO4-H2O System at 298.15 and 323.15 K, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 2680–2698.CrossRefGoogle Scholar
  28. Yakhontova, L.K. and Zvereva, V.P., Osnovy mineralogii gipergeneza (Principles of Supergene Mineralogy), Vladivostok: Dal’nauka, 2000.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. V. Charykova
    • 1
  • V. G. Krivovichev
    • 1
  • W. Depmeier
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Department of Mineralogy and Crystallography, Institute for GeoscienceChristian-Albrecht University of KielKielGermany

Personalised recommendations