Geology of Ore Deposits

, Volume 52, Issue 7, pp 656–661 | Cite as

Aktashite Cu6Hg3As4S12 from the Aktash deposit, Altai, Russia: Refinement and crystal chemical analysis of the structure

  • V. I. Vasil’ev
  • N. V. Pervukhina
  • S. V. Borisov
  • S. A. Magarill
  • D. Yu. Naumov
  • N. V. Kurat’eva
Mineralogical Crystallography and Crystal Chemistry


The composition and structure of aktashite from the Aktash deposit, Gorny Altai, Russia, have been studied by electron microprobe and X-ray structural analysis. On the basis of close compositions and crystal structures, the identity of aktashite from the Gal-Khaya and Aktash deposits has been demonstrated. Crystals of aktashite are of trigonal symmetry; the unit-cell dimensions are: a = 13.7500(4), c = 9.3600(3) Å, V = 532.54(8) Å3, space group R3, Z = 3 for the composition of Cu6Hg3As4S12, R = 0.043. The structure of aktashite as a framework of vertex-shared HgS4− and CuS4− tetrahedrons of the same orientation is intimately related to the sphalerite-type structure. The earlier identified uncommon cluster group [As4] has been verified and its parameters have been refined. It is shown that the structure may be represented as construction blocks (As4S12)12− packed according to the law of the distorted cubic I-cell.


Vasil Electron Microprobe Polysulfide Unit Cell Dimension Trigonal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11): Bruker Advanced X-ray Solutions (Bruker AXS Inc., Madison, 2004).Google Scholar
  2. 2.
    M. S. Bezsmertnaya and T. N. Chvileva, Identification Guide of Ore Minerals in Reflected Light (Nedra, Moscow, 1976) [in Russian].Google Scholar
  3. 3.
    N. A. Bliznyuk and S. V. Borisov, “Progress in Methods of Geometric Analysis of the Structures of Inorganic Compounds,” Zh. Strukt. Khim. 33(2), 145–162 (1992).Google Scholar
  4. 4.
    N. A. Bliznyuk, S. V. Borisov, and E. Kuklina, “Classification of Fluorides of Heavy Metals. Fluorides with Fluorite-Type Cation Arrangment,” Zh. Strukt. Khim. 35(1), 71–80 (1994).Google Scholar
  5. 5.
    S. V. Borisov, R. F. Klevtsova, S. A. Magarill, et al., “Experimental Crystallography from Atomic to Supramolecular,” Zh. Strukt. Khim. 43(4), 664–670 (2002).Google Scholar
  6. 6.
    M. C. Burla, R. Galiandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, and R. Spagna, “SIR2004: an Improved Tool for Crystal Structure Determination and Refinement,” J. Appl. Cryst. 38. 381–388 (2005).CrossRefGoogle Scholar
  7. 7.
    S. A. Gromilov and S. V. Borisov, “Application of Pseudoperiodicity for Determination of Common Structural Motif of Coordination Compounds on the Basis of X-ray Diffraction Data of Polycrystals,” Zh. Strukt. Khim. 44(4), 724–742 (2003).Google Scholar
  8. 8.
    V. S. Gruzdev, N. M. Chernitsova, and N. G. Shumkova, “New Data on Aktashite Cu6Hg3As5S12,” Dokl. Akad. Nauk SSSR 206(3), 694–697 (1972).Google Scholar
  9. 9.
    L. N. Kaplunnik, E. A. Pobedimskaya, and N. V. Belov, “Crystal Structure of Aktashite Cu6Hg3As5S12,” Dokl. Akad. Nauk SSSR 251(1), 96–98 (1980).Google Scholar
  10. 10.
    S. V. Krivovichev and S. K. Filatov, “Structural Principles for Minerals and Inorganic Compounds Containing Anion-Centered Tetrahedra,” Am. Mineral. 84, 1099–1106 (1999).Google Scholar
  11. 11.
    V. Nowacki, “Isotypy of Aktashite Cu6Hg3As5S12 and Nowackiite Cu6Zn3As4S12,” Kristallografiya 27(1), 49–50 (1982).Google Scholar
  12. 12.
    E. A. Pobedimskaya, L. N. Kaplunnik, and I. V. Petrova, “Crystallochemical Classifications of Sulfides and Sulfosalts,” Itogi Nauki I Tekhniki, Ser. Kristallokhimiya. 25, 119–214 (1991).Google Scholar
  13. 13.
    G. M. Sheldrick, SHELXS97 and SHELXL97. Programs for the Refinement of Crystal Structures (University of Göttingen, 1998).Google Scholar
  14. 14.
    E. M. Spiridonov, L. Ya. Krapiva, A. K. Gapeev, et al., “Gruzdevite Su6Hg3Sb4S12, a New Mineral Species from the Chauvay Sb-Hg Deposit, Central Asia,” Dokl. Akad. Nauk SSSR 261(4), 971–976 (1981a).Google Scholar
  15. 15.
    E. M. Spiridonov, L. Ya. Krapiva, V. I. Stepanov, and T. N. Chvileva, “Sb-Bearing Aktashite from the Chauvay Hg deposit, Central Asia,” Dokl. Akad. Nauk SSSR 261(3), 744–748 (1981b).Google Scholar
  16. 16.
    V. I. Vasil’ev, “New Ore Minerals and Their Assemblages from Mercury Deposits of Gorny Altai,” in Problems of Mercury Metallogeny of Siberia and Russian Far East (Nauka, Moscow, 1968a), pp. 111–129 [in Russian].Google Scholar
  17. 17.
    V. I. Vasil’ev, “The Aktash Deposit As an Example of Carbonate-Cinnabar Mineral Type of Mercury Ore Assemblage,” in Ore Assemblages and Genesis of Endogenic Deposits in the Altai-Sayan Fold Region (Nauka, Moscow, 1968b), pp. 76–113 [in Russian].Google Scholar
  18. 18.
    V. I. Vasil’ev, Candidate’s Dissertation in Geology and Mineralogy (Novosibirsk, 1970).Google Scholar
  19. 19.
    V. I. Vasil’ev and Yu. G. Lavrent’ev, “Hg-bearing tennantite,” Dokl. Akad. Nauk SSSR 218(3), 665–667 (1974).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. I. Vasil’ev
    • 1
  • N. V. Pervukhina
    • 2
  • S. V. Borisov
    • 2
  • S. A. Magarill
    • 2
  • D. Yu. Naumov
    • 2
  • N. V. Kurat’eva
    • 2
  1. 1.Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Inorganic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations