Geology of Ore Deposits

, Volume 52, Issue 5, pp 392–409 | Cite as

Mineralogy and formation conditions of ore from the Biksizak silver-base-metal occurrence in the South Ural, Russia

  • O. Yu. Plotinskaya
  • E. O. Groznova
  • A. I. Grabezhev
  • K. A. Novoselov
Article

Abstract

The Biksizak silver-base-metal occurrence is situated in the Birgil’da-Tomino ore cluster of the East Ural Zone. The mineralization is hosted in the Silurian marble (Eastern site) and limestone interbeds in andesitic dacite (Western site). Four mineral assemblages have been established: the earliest hematite-magnetite, the subsequent pyrite-arsenopyrite and chalcopyrite-sphalerite occurring only in the Eastern site, and fahlore-chalcopyrite known only from the Western site. The closest positive correlation links Cu-Zn-Ag, Zn-Pb, Cu-Ag, and Zn-Au. The correlation between chemical elements varies depending on the localization of the ore. Correlation pairs Au-Ag, Au-Cu, Pb-Ag, and Pb-Cu are characteristic of ore from the Eastern site and are not established in the Western site. In the Eastern site Cu/(Zn + Pb) in ore is < 1, whereas in the Western site this ratio is markedly higher than unity. As follows from fluid inclusion study and mineral geothermometry, ore minerals at the Bilsizak occurrence were formed at a temperature of 300 to 150°C from low- and moderate-saline chloride fluids with 1–9 wt % NaCl equiv. The data obtained show that the Biksizak occurrence was localized at the margin of a porphyry system characterized by hydrothermal and skarn processes.

Keywords

Pyrite Fluid Inclusion Chalcopyrite Galena Native Gold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodnar, R.J. and Vityk, M.O., Interpretation of Microterhrmometric Data for H2O-NaCl Fluid Inclusions, in Fluid Inclusions in Minerals: Methods and Applications. Pontignano: Siena, 1994, pp. 117–130.Google Scholar
  2. Borisenko, A.S., Study of Salt Composition of Fluid Inclusions in Minerals with Cryometric Method, Geol. Geofiz., 1977, vol. 18, no. 8, p. 16–27.Google Scholar
  3. Cathelineau, M., Cation Site Occupancy in Chlorites and Illites As a Function of Temperature, Clay Miner., 1988, vol. 23, no. 4, p. 471–485.CrossRefGoogle Scholar
  4. Dobrovol’skaya, M.G. and Shadlun, T.N., Mineral’nye assotsiatsii i usloviya formirovaniya svintsovo-tsinkovykh rud (Mineral Assemblages and Formation Conditions of Lead-Zinc Deposits), Moscow: Nauka, 1974.Google Scholar
  5. Grabezhev, A.I. and Krasnobaev, A.A., U-Pb Age and Isotopic and Geochemical Characterization of the Tomino-Bereznyakovskoe Ore Field, Litosfera, 2009, no. 2, p. 1427.Google Scholar
  6. Grabezhev, A.I., Kuznetsov, N.S., and Puzhakov, B.A., Rudno-metasomaticheskaya zonal’nost’ medno-porfirovoi kolonny natrievogo tipa (paragonitsoderzhashchie oreoly, Ural) (Ore and Metasomatic Zoning of Porphyry Copper Column of Sodic Type (Paragonite-Bearing Halos, the Urals), Yekaterinburg: UGGGA, 1998.Google Scholar
  7. Grabezhev, A.I., Sazonov, V.N., Murzin, V.V., et al., The Bereznyakovskoe Gold Deposit (South Urals, Russia), Geol. Rudn. Mestorozhd., 2000, vol. 42, no. 1, p. 38–52 [Geol. Ore Deposits (Engl. Transl.), vol. 42, no. 1, p. 33–46].Google Scholar
  8. Herrington, R.J., Zaykov, V.V., Maslennikov, V.V., et al., Mineral Deposits of the Urals and Links to Geodynamic Evolution, Econ. Geol., 2005, vol. 100, p. 1069–1095.Google Scholar
  9. Hey, M.H., A New Review of the Chlorites, Mineral. Mag., 1954, vol. 30, p. 277–292.CrossRefGoogle Scholar
  10. Kranidiotis, P., MacLean W.H. Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec, Econ. Geol., 1987, vol. 82, p. 1898–1911.CrossRefGoogle Scholar
  11. Leach, D.L., Sangster, D.F., Kelley, K.D., et al., Sediment-Hosted Lead-Zinc Deposits: a Global Perspective, Econ. Geol., 2005, vol. 100, p. 561–607.Google Scholar
  12. Lehmann, B., Heinhorst, J., Hein, U., et al., The Bereznjakovskoe Gold Trend, Southern Urals, Russia, Miner. Deposita, 1999, vol. 34, p. 241–249.CrossRefGoogle Scholar
  13. Meinert, L.D., Dipple, G.M., and Nicolescu, S., World Skarn Deposits, Econ. Geol., 2005, vol. 100, p. 299336.Google Scholar
  14. Plotinskaya, O.Yu., Grabezhev, A.I., and Trubkin, N.V., Mineralogy of Ores from the Biksizak Silver-Bas-Metal Occurrence, the South Urals, in Materialy nauch. konf. “Problemy geologii rudnykh mestorozhdenii, mineralogii, petrologii i geokhimii” (Proceedings of Sci. Conference on Geology of Ore Deposits, Mineralogy, Petrology, and Geochemistry), Moscow: IGEM RAN, 2008, p. 244–246.Google Scholar
  15. Plotinskaya, O.Yu., Groznova E O., Kovalenker V.A., et al., Mineralogy and Formation Conditions of Ores in the Bereznyakovskoe Ore Field, the Southern Urals, Russia, Geol. Rudn. Mestorozhd., 2009, vol. 51, no. 5, p. 414–443 [Geol. Ore Deposits (Engl. Transl.), vol. 51, no. 5, p. 371–397].Google Scholar
  16. Polyakova, O.P., Lead-Zinc Deposits of the Kadaya Ore Field, in Voprosy geologii i genezisa nekotorykh svintsovotsinkovykh mestorozhdenii Vostochnogo Zabaikal’ya (Geology and Genesis of Some Lead-Zinc Deposits in the Eastern Transbaikal Region), Wolfson, F.I., Ed., Moscow: Akad. Nauk SSSR, 1963, pp. 265–318.Google Scholar
  17. Prendergast, K., Clarke, G.W., Pearson, N.J., and Harris, K., Genesis of Pyrite-Au-As-Zn-Bi-Te Zones Associated with Cu-Au Skarns: Evidence from the Big Gossan and Wanagon Gold Deposits, Ertsberg District, Papua, Indonesia, Econ. Geol., 2005, vol. 100, p. 1021–1050.CrossRefGoogle Scholar
  18. Puzhakov, B.A., Productive Granitoids, Metasomatism, and Ore Mineralization of the Birgil’da-Tomino Ore Cluster, Cand. Sci. (Geol.-Mineral.) Dissertation, Yekaterinburg: Inst. Geol. Geochem., 1999.Google Scholar
  19. Radkevich, E.A., Arkhangel’skaya, V.V., and Polyakova, O.P., Genesis and Localization of Lead-Zinc Deposits of the Eastern Transbaikal Region, in Voprosy geologii i genezisa nekotorykh svintsovo-tsinkovykh mestorozhdenii Vostochnogo Zabaikal’ya (Geology and Genesis of Some Lead-Zinc Deposits in the Eastern Transbaikal Region),Wolfson, F.I., Ed., Moscow: Akad. Nauk SSSR, 1963, pp. 529–540.Google Scholar
  20. Roedder, E., Fluid Inclusions in Minerals, Reviews in Mineralogy, Mineral. Soc. Amer., 1984, vol. 12, Mir, Moscow, 1987.Google Scholar
  21. Romashova, L.N., The Birgil’da Porphyry Copper Deposit, Geol. Rudn. Mestorozhd., 1984, vol. 26, no. 2, pp. 20–20.Google Scholar
  22. Rudnye mestorozhdeniya SSSR (Ore Deposits of the USSR), Moscow: Nedra, 1978, vol. 2.Google Scholar
  23. Rykus, M.V., Kuznetsov, N.S., Snachev, V.I., et al., Geodynamics and Metallogeny of the East Ural Megazone of the South Urals, Neftegaz. Delo, 2006, vol. 4, no. 1, pp. 11–26.Google Scholar
  24. Scott, S.D., Chemical Behavior of Sphalerite and Arsenopyrite in Hydrothermal and Metamorphic Environments, Mineral. Mag., 1983, vol. 47, p. 427–435.CrossRefGoogle Scholar
  25. Sillitoe, R.H., Porphyry Copper Systems, Econ. Geol., 2010, vol. 105, pp. 3–41.CrossRefGoogle Scholar
  26. Snachev, V.I. and Kuznetsov, N.S., Geology of the Biksizak Stratiform Base-Metal Deposit, the East Ural Megazone Geol. Sborn., 2009, no. 8, p. 204–209.Google Scholar
  27. Wagner, T. and Cook, N.J., Carrollite and Related Minerals of the Linnaeite Group: Solid Solutions and Nomenclature in the Light of New Data from the Siegerland District, Germany, Can. Mineral., 1999, vol. 37, no. 3, pp. 545–558.Google Scholar
  28. Zharikov, V.A., Geologiya i metasomaticheskie yavleniya skarnovo-polimetallicheskikh mestorozhdenii Zapadnogo Karamazara (Geology and Metasomatic Phenomena of Base-Metal Skarn Deposits of the Western Karamazar), Moscow: Akad. Nauk SSSR, 1959.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • O. Yu. Plotinskaya
    • 1
  • E. O. Groznova
    • 1
  • A. I. Grabezhev
    • 2
  • K. A. Novoselov
    • 3
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Zavaritsky Institute of Geology and Geochemistry, Ural DivisionRussian Academy of SciencesYekaterinburgRussia
  3. 3.Institute of Mineralogy, Ural DivisionRussian Academy of SciencesMiass, Chelyabinsk oblastRussia

Personalised recommendations