Geology of Ore Deposits

, Volume 51, Issue 7, pp 644–655 | Cite as

Anomalous variations of crystal habits and solution properties in the context of the crystallization medium structure

  • E. V. Kiryanova
  • V. L. Ugolkov
  • L. A. Pyankova
  • S. K. Filatov
Mineralogical Crystallography

Abstract

The effect of the real structure of solutions on crystallization is one of the basic issues of crystallogenesis, which is also important for resolving problems of genetic mineralogy. The study of the NaNO3-H2O and KNO3-H2O model systems yielded new data on anomalous characteristics of crystal-forming systems, including morphological and kinetic properties of crystals, crystal-solution equilibrium, and physical properties of solutions (light scattering, thermal properties, IR parameters, pH), providing information on the structure of solutions. The internally consistent data confirm the previously suggested variations in structural heterogeneity of solutions related to minor (2–4%) variations in their composition, which result in numerous disturbances of monotonicity (thermal-concentration oscillations) in the liquidus curves of salts. It is shown that these variations can be caused by variable size and composition of crystal hydrate clusters. The experimental data indicate that the effect of the real solution structure on crystal morphology and crystal-solution equilibrium is enhanced in multicomponent systems, including natural crystal-forming systems. Anomalous faceting and habit, zoning, a sectorial structure of crystals, and nonuniform entrapment of admixtures cannot be ruled out in these systems.

Keywords

Saturation Temperature Crystal Hydrate Liquidus Curve Crystal Habit Anomalous Variation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Askhabov, Crystallogenesis and Evolution of the Crystal-Medium System (Nauka, St. Petersburg, 1963) [in Russian].Google Scholar
  2. 2.
    A. M. Askhabov, Quataron Concept of Cluster Self-Organization of Matter on Nanolevel in Solution of Problems of Crystallography, Mineralogy, and Related Sciences (Syktyvkar, 2003) [in Russian].Google Scholar
  3. 3.
    A. I. Avgustnik, “Formation of Crystalline Phase from Silicate Melt,” in Vitreous State (Acad. Sci. USSR, Moscow, 1960), pp. 115–119 [in Russian].Google Scholar
  4. 4.
    S. N. Bocharov, A. E. Glikin, E. V. Kiryanova, and V. V. Sipyagin, “Anomalies of Growth Rate and Faceting of Sodium Chlorate Crystals,” Zap. Vseross. Mineral. O-va 132(2), 99–107 (2003).Google Scholar
  5. 5.
    A. M. Blokh, Structure of Water in Geological Processes (Nedra, Moscow, 1969) [in Russian].Google Scholar
  6. 6.
    O. K. Botvinkin, “Glass Formation and Some Properties of Glasses in Immiscible Systems,” in Vitreous State (Nauka, Leningrad, 1971), pp. 39–41 [in Russian].Google Scholar
  7. 7.
    D. Eisenberg and W. Kauzmann, Structure and Properties of Water (Oxford Univ. Press, London, 1969; Gidrometeoizdat, Leningrad, 1975) [in Russian].Google Scholar
  8. 8.
    S. K. Filatov, T. F. Semenova, and L. P. Vergasova, “The Birth of New Crystal Chemistry on Volcanoes,” in Geology. Program of “Universities of Russia” (Moscow State Univ., Moscow, 1994), Part. 2, pp. 16–20 [in Russian].Google Scholar
  9. 9.
    V. D. Franke and Yu. O. Punin, “Density of Potassium Chloride Solution in the Region of Phase Transition in Solution,” in Crystallography and Crystal Chemistry (Leningr. State Univ., Leningrad, 1973), No. 2, pp. 138–142 [in Russian].Google Scholar
  10. 10.
    D. I. Frich-Khar, Crystalization of Magmatic Glass and Some Petrogenetic Issues (Nauka, Moscow, 1976) [in Russian].Google Scholar
  11. 11.
    A. E. Glikin, “Anomalous Effects and Mechanisms of Crystallogenesis,” in Proceedings of XV Russian Conference on Experimental Mineralogy (Syktyvkar, 2005), pp. 351–352 [in Russian].Google Scholar
  12. 12.
    A. E. Glikin and A. I. Glazov, “Issues of Genetic Interpretation of Crystals Form,” Zap. Vsesoyuzn. Mineral. O-va 108(5), 536–551 (1979).Google Scholar
  13. 13.
    A. E. Glinkin and A. I. Glazov, “Rational and Debatable in Genetic Interpretation of Crystal Morphology,” in New Ideas in Genetic Mineralogy (Nauka, Leningrad, 1983), pp. 60–65 [in Russian].Google Scholar
  14. 14.
    A. E. Glikin, E. V. Kiryanova, M. Yu. Sinai, and V. V. Sipyagin, “Morphogenesis of Crystals in Solutions,” in Physics of Crystallization (Issues of Modern Crystallography) (Nauka, Moscow, 2002), pp. 1–27 [in Russian].Google Scholar
  15. 15.
    V. V. Golubkov, B. A. Shakhmatkin, A. A. Pronkin, N. A. Charykov, S. V. Rysaeva, and B. A. Akselrod, “Interpretation of Anomalous Behavior of Some Third Derivatives of the Gibbs Potential of Liquid Phase near Liquidus in connection with Phase Formation,” Zh. Prikl. Khim. 74(4), 943–948 (2001).Google Scholar
  16. 16.
    H. G. Hertz and R. Mazitov, “An Attempt to Direct Higher Ion-Ion Correlations (Microheterogeneity) in Aqueous Solution of Rb and Cs Halides,” Ber. Bunsen. Phys. Chem. 85, 1103–1112 (1981).Google Scholar
  17. 17.
    A. G. Kalinichev and Yu. E. Gorbaty, “Role of Hydrogen Bonds in the Structure and State of Hydrothermal Fluids,” in Experimental and Theoretical Modeling of Mineral Formation (Nauka, Moscow, 1998), pp. 242–264 [in Russian].Google Scholar
  18. 18.
    M. K. Khripun, “Role of Structurally Forced Effects in Complexation of Concentrated Solutions,” Koord. Khim. 18(7), 768–783 (1992).Google Scholar
  19. 19.
    M. K. Khripun, Yu. P. Kostikov, A. A. Kiselev, and O. N. Pestova, “Structure of Aqueous Electrolyte Solution by X-Ray Diffraction,” Zh. Obshch. Khim. 74(2), 190–193 (2004) [Russian J. General Chem. 74 (2), 167–1170 (2004)].Google Scholar
  20. 20.
    B. I. Kidyarov, “Kinetics of Crystallization in Aqueous Solution of Ammonium Salts,” in Proceedings of XV Russian Conference on Experimental Mineralogy (Syktyvkar, 2005), pp. 373–375 [in Russian].Google Scholar
  21. 21.
    A. N. Kirgintsev and L. N. Efanov, “Some Features of Polytherms of Surface Tension and Aqueous Solutions,” Izv. Akad. Nauk SSSR, Ser. Khimiya, No. 3, 571–577 (1967).Google Scholar
  22. 22.
    Kiryanova E.V. “New Effects of Crystal-Solution Phase Equilibria in a Model System NaNO3-H2O,” J. Cryst. Growth 253(1/4), 452–459 (2003).CrossRefGoogle Scholar
  23. 23.
    E. V. Kiryanova, “Temperature-Concentration Oscillations As a Reflection of Nanostructural Phenomena in Solutions,” Zap. Ross. Mineral. O-va 136(7), 53–65 (2007).Google Scholar
  24. 24.
    E. V. Kiryanova, “Temperature-Concentration Oscillations Associated with Structural State of Solutions,” Zh. Obshch. Khim. 77(12) (2007) [Russian J. General Chem. 77 (12), 2083–2090 (2007)].Google Scholar
  25. 25.
    E. V. Kiryanova and A. E. Glikin, “Crystal Morphology of Synthetic Fluorite,” Zap. Vsesoyuzn. Mineral. O-va 115(2), 226–234 (1986).Google Scholar
  26. 26.
    E. V. Kiryanova and A. E. Glikin, “The Laws of Fluorite and Calcite Habit Formation in Terms of the Morphogenetic Structural-Chemical Concept,” J. Cryst. Growth., 198/199, 697–703 (1999).CrossRefGoogle Scholar
  27. 27.
    E. V. Kiryanova, V. L. Ugolkov, and S. K. Filatov, “Comprehensive Thermal Study of Sodium Nitrate Aqueous Solutions in connection with Nonmonotonic Solubility Curve,” in Proceedings of the International Congress on Crystallogenesis and Mineralogy (St. Petersburg, 2001), pp. 178–179 [in Russian].Google Scholar
  28. 28.
    S. V. Krivovichev, V. V. Gurzhii, I. G. Tananaev, and B. F. Myasoedov, “A Microscopic Model of Crystallogenesis from Uranyl Selenate Aqueous Solutions,” Zap. Ross. Mineral. O-va 136(7), 91–114 (2007).Google Scholar
  29. 29.
    G. V. Lagodzinskaya, N. G. Yunda, and G. B. Manelis, “Labile Supramolecular Structures and Their Dynamics in Associated Liquids from NMR,” Izv. Ross. Akad. Nauk, Ser. Khimiya., No. 4, 577–601 (2006).Google Scholar
  30. 30.
    A. K. Lyashchenko, “Structural and Molecular Kinetic Properties of Concentrated Solutions and Phase Equilibrium in the Water-Salt Systems,” in Concentrated and Saturated Solutions, Ed. by A. M. Kutepov (Nauka, Moscow, 2002), pp. 93–118 [in Russian].Google Scholar
  31. 31.
    I. V. Melikhov, E. D. Kozlovskaya, and A. M. Kutepov, “Crystallization from Concentrated Solutions,” in Concentrated and Saturated Solutions, Ed. by A. M. Kutepov (Nauka, Moscow, 2002), pp. 3–51 [in Russian].Google Scholar
  32. 32.
    L. A. Ovchinnikov and A. M. Masalovich, “Polymorphism of Water and Its Role in Hydrothermal Mineral Formation,” Zap. Vsesoyuzn. Mineral. O-va 106(1), 179–191 (1977).Google Scholar
  33. 33.
    O. N. Pestova, Yu. P. Kostikov, and M. K. Khripun, “XRay Phase Analysis of Structure of Water-Salt Systems: NaCl-H2O and KCl-H2O,” Zh. Prikl. Khim. 77(7), 1082–1085 (2004) [Russian J. Applied Chem. 77 (7), 1066–1069 (2004)].Google Scholar
  34. 34.
    A. V. Plyasunov and I. Grente, “Thermodynamics of Polynuclear Complexation Formation in Medium,” in Experimental and Theoretical Modeling of Mineral Formation (Nauka, Moscow, 1998), pp. 264–271 [in Russian].Google Scholar
  35. 35.
    L. A. Pyankova, E. V. Kiryanova, and V. L. Ugolkov, “Phase Equilibria and Thermal Properties of Solutions in the KNO3-H2O System in Region of Kinetic Anomalies,” in Mineralogical Museums. Proceedings of IV International Symposium on History of Mineralogy, Gemmology, Crystal Chemistry, and Crystallogenesis (St. Petersburg, 2002), pp. 291–292 [in Russian].Google Scholar
  36. 36.
    V. A. Shcherbakov, Issues of Modern Chemistry and Coordination Compounds (St. Petersburg State Univ., St. Petersburg, 1993), No. 11, pp. 37–60 [in Russian].Google Scholar
  37. 37.
    V. V. Sipyagin, “Some Anomalies of the Temperature-Dependent Rate of Growth of Faces of the NaClO3 and KClO3 Crystals at Stable Oversaturation,” Kristallografiya, No. 4, 678–683 (1967).Google Scholar
  38. 38.
    V. V. Sipyagin and A. A. Chernov, “Anomalies in Temperature-Dependent Rate of Face Growth of KNO3, NaNO2, NaNO3, NaClO4 and Rochelle Salt Crystals in Aqueous Solutions,” Kristallografiya, No. 5, 1003–1008 (1972).Google Scholar
  39. 39.
    E. E. Treivus, Kinetics of Crystal Growth and Dissolution (Leningr. State Univ., Leningrad, 1979) [in Russian].Google Scholar
  40. 40.
    K. Trincher, Die Gesetze der Biologischen Thermodynamik (Urban-Scherzenberg, Vienna, 1981).Google Scholar
  41. 41.
    E. G. Tsvetkov and B. I. Kidyarov, “Nanosized Stages of Crystallogenesis in Liquid Phase,” in Proceedings of II International Conference on Crystallogenesis and Mineralogy, (St.Petersburg, 2007), pp. 404–407.Google Scholar
  42. 42.
    E. Van der Voort, “Observations of Growth Form and Habit of Potassium Nitrate As a Function of the Temperature,” J. Cryst. Growth. 100(3), 539–544 (1990).CrossRefGoogle Scholar
  43. 43.
    A. G. Vlasov, A. A. Venediktov, K. P. Dutova, V. K. Zakharov, V. A. Zubarev, R. I. Kurzinovskaya, V. N. Morozov, A. F. Pazubenkov, E. V. Smirnova, S. P. Florinskaya, T. E. Chebotareva, and E. F. Cherneeva, “Ordered Structure of Inorganic Glasses,” in Vitreous State (Nauka, Leningrad, 1971), pp. 41–54 [in Russian].Google Scholar
  44. 44.
    W. W. Wendland, Thermal Methods of Analysis (Wiley, New York, 1975; Mir, Moscow, 1978) [in Russian].Google Scholar
  45. 45.
    J. L. Yager and G. N. Wolf, “On Polymorphisms in Liquids,” Science 306, 820 (2004).CrossRefGoogle Scholar
  46. 46.
    N. P. Yushkin, “Experiment in Mineralogy: Functions, Methods, and Issues,” in Experiment in Mineralogy and Modeling of Mineral Formation (Syktyvkar, 1997), pp. 3–31 [in Russian].Google Scholar
  47. 47.
    N. P. Yushkin, Theory and Methods of Mineralogy (Selected Issues) (Nauka, Leningrad, 1977) [in Russian].Google Scholar
  48. 48.
    I. V. Zakirov and N. G. Sretenskaya, “Theoretical and Experimental Study of Molecular Clustering in Single-Component Gas Medium,” in Experimental and Theoretic Modeling of Mineral Formation (Nauka, Moscow, 1998), pp. 272–279 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. V. Kiryanova
    • 1
  • V. L. Ugolkov
    • 2
  • L. A. Pyankova
    • 1
  • S. K. Filatov
    • 1
  1. 1.Laboratory of Crystallogenesis and Department of CrystallographySt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations