Geology of Ore Deposits

, Volume 50, Issue 8, pp 749–754 | Cite as

Elpasolite from hyperalkaline pegmatite of the Khibiny pluton, Kola Peninsula. Symmetry of elpasolite

  • I. V. Pekov
  • N. V. Chukanov
  • N. N. Kononkova
  • N. V. Zubkova
  • M. Kh. Rabadanov
  • D. Yu. Pushcharovsky
Minerals and Parageneses of Minerals


Elpasolite, K2NaAlF6, has been found for the first time in a pegmatite related to peralkaline foid syenite at Mt. Koashva, Khibiny alkaline pluton, Kola Peninsula, Russia, as pale pink octahedral crystals up to 2 mm in size within cavities in the natrolite core of pegmatite in association with amicite, sodalite, aegirine, pectolite, catapleiite, sitinakite, lemmleinite-K, and vinogradovite. The chemical composition determined with an electron microprobe is as follows, wt %: 31.53 K; 9.22 Na; 11.20 Al; 47.21 F; total is 99.16. The empirical formula is K1.96Na0.98Al1.01F6.05. The infrared spectrum is given. The crystal structure has been refined to R = 0.030, space group Fm \( \bar 3 \) m, a = 8.092 Å. The result of a special X-ray powder diffraction study confirmed the suggestion made by Morss (1974) that reflections violating space group Fm \( \bar 3 \) m in some published X-ray powder patterns of natural elpasolite are Kβ-lines.


Nepheline Kola Peninsula Cryolite Cetine Metasomatic Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Alter and R. Hoppe, “Über Fluoroniccolate(III): Über Cs2KNiF6, Cs2NaNiF6, Rb2KNiF6, Rb2NaNiF6 und K2NaNiF6,” Zschr. Anorg. Allg. Chemie 405, 110–120 (1974).Google Scholar
  2. 2.
    E. Alter and R. Hoppe “Cs2MVF6 und Rb2MVF6 (M = Tl, K, and Na), mit einer Bemer Kung über Na2VF6,” Zschr. Anorg. Allg. Chemie 412, 110–120 (1975).CrossRefGoogle Scholar
  3. 3.
    J. H. Bernard and J. Hyřsl, Minerals and Their Localities (Granit, Praha, 2004).Google Scholar
  4. 4.
    A. Cousson, A. Vedrine, and J. C. Cousseins, “Nouvelles Elpasolites fluorèes de dormule A2BBiF6 (A = Cs, Rb, B = Tl, Rb, K, Na),” Compt. Rend. Hebdomadaires des Seanses de l’Academie des Sciences. Ser. C, Sciences Chimiques 274, 864–866 (1972).Google Scholar
  5. 5.
    W. Cross and W. C. Hillebrand, “On Minerals of the Cryolite Group Recently Found in Colorado,” Am. J. Sci., 3rd Ser. 26, 271–294 (1883).Google Scholar
  6. 6.
    E. B. Eckel, Minerals of Colorado (Fulcrum Publ. Golden Colorado, 1998).Google Scholar
  7. 7.
    E. E. Foord, A. E. Soregarolli, and H. M. Gordon, “The Zapot Pegmatite, Mineral County, Nevada,” Miner. Rec. 30, 277–292 (1999).Google Scholar
  8. 8.
    C. Frondel, “New Data on Elpasolite Andhagemannite,” Am. Mineral. 33(1/2), 84–87 (1948).Google Scholar
  9. 9.
    F. C. Hawthorne and R. B. Ferguson, “Refinement of the Crystal Structure of Cryolite,” Can. Mineral. 13, 377–382 (1975).Google Scholar
  10. 10.
    E. Herdtweck, W. Massa, and D. Babel, “Ein Kristallstrukturbestimmungen der Kubischen Hochdruck Elpasolithe Rb2LiFeF6 und Cs2NaFeF6: Druck Abstands-Paradoxon Ohne Änderung der Koordinationszahl,” Zschr. Anorg. Allg. Chemie 539, 87–94 (1986).CrossRefGoogle Scholar
  11. 11.
    R. Hoppe and K. Lehr, “Cs2MMoF6, Rb2MMoF6, Tl2MMoF6 (M = K, Na) und Cs2TlMoF6. Mit Einer Notiz über MoF3,” Zschr. Anorg. Allg. Chemie 416,240–250 (1975).CrossRefGoogle Scholar
  12. 12.
    V. A. Kalyuzhny, “The Study of Composition of Captured Minerals in Multiphase Inclusions,” Mineral. Sb. L’vov Geol. O-va, No. 12, 117–128 (1958).Google Scholar
  13. 13.
    L. E. Kearns, “Alumino-Fluorides from the Morefield Pegmatite, Amelia County, Virginia,” Miner. Rec. 26,551–556 (1995).Google Scholar
  14. 14.
    K. Knox and D. W. Mitchell, “The Preparation and Structure of K2NaCrF6 and K2NaGaF6,” J. Inorg. Nuclear Chem. 21, 253–258 (1961).CrossRefGoogle Scholar
  15. 15.
    A. J. Majumdar and R. Roy, “Test of the Applicability of the Clapeyron Relationship to a Few Cases of Solid-Solid Transitions,” J. Inorg. Nuclear Chem. 27, 1961–1973 (1965).CrossRefGoogle Scholar
  16. 16.
    W. Massa, D. Babel, M. Epple, and W. Ruedorff, “Sind Fluorepasolithe Fehlgeordnet? Strukturbestimmungen an Einkristallen von K2NaCrF6, Rb2NaFeF6 und R2NaKFeF6,” Rev. Chimie Minerale 23, 508–519 (1986).Google Scholar
  17. 17.
    G. Menzer, Über die Kristallstrukturen der Kryolithgruppe Fortschr. Mineral. 17, 61 (1932).Google Scholar
  18. 18.
    Minerals. Reference Book, Ed. by F. V. Chukhrov and E. M. Bonshted-Kupletskaya (Akad. Nauk SSSR, Moscow, 1963), Vol. II, No. 1 [in Russian].Google Scholar
  19. 19.
    L. R. Morss, “Crystal Structure of Dipotassium Sodium Fluoroaluminate (Elpasolite),” J. Inorg. Nuclear. Chem. 36, 3876–3878 (1974).CrossRefGoogle Scholar
  20. 20.
    Ya. A. Pakhomovsky, G. Yu. Ivanyuk, and V. N. Yakovenchuk, “Mineralogy of Productive Complex of Mount Kedykvyrpakhk, Lovozero Pluton, Kola Peninsula,” in Proceedings of III Fersman Scientific Session of the Kola Division of the Russian Mineralogical Society (Apatity, 2006), pp. 128–131.Google Scholar
  21. 21.
    I. V. Pekov, “Change of Sodium Regime of Alkalinity by Potassium Regime during Late Stages of the Evolution of Peralkaline Complexes,” in Proceedings of Scientific School on Alkaline Magmatism of the World (GEOChI RAS, Moscow, 2001), pp. 55–56.Google Scholar
  22. 22.
    I. V. Pekov, N. V. Chukanov, N. N. Kononkova, et al., “Remondite-(La), Na3(La,Na,Na)3(NO3)5, a New Mineral Species of Burbankite Family from the Khibiny Pluton, Kola Peninsula,” Zap. Vseross. Mineral. O-va 129(1), 53–60 (2000).Google Scholar
  23. 23.
    O. V. Petersen and K. Secher, “The Minerals of Greenland,” Miner. Res. 24(2), 4–67 (1993).Google Scholar
  24. 24.
    V. O. Polyakov, “Alumofluorites of the Il’meny Mountains,” in Minerals from Deposits of the Central and Southern Urals (Sverdlovsk, 1985), pp. 3–11 [in Russian].Google Scholar
  25. 25.
    C. Sabelli, “Structure Refinement of Elpasolite from Cetine Mine, Tuscany, Italy,” N. Jb. Miner. Mh., 481–487 (1987).Google Scholar
  26. 26.
    S. Schneider and R. Hoppe, “Über Neue Verbindungen Cs2NaMF6 und K2NaMF6 Sowie über Cs2KMF6,” Zschr. Anorg. Allg. Chemie 376, 268–276 (1970).CrossRefGoogle Scholar
  27. 27.
    E. G. Steward and H. P. Rooksby, “Transitions in Crystal Structure of Cryolite and Related Fluorides,” Acta Crystallogr. 6, 49–562 (1953).CrossRefGoogle Scholar
  28. 28.
    A. Vedrine, D. Belin, and J. P. Besse, “Oxyfluorides du Type A2BZrOF5,” Bull. Soc. Chim. France, 76–78 (1972).Google Scholar
  29. 29.
    W. Wilhelm and R. Hoppe, “Zur Kenntnis der Hexafluororhodate( III): Über Cs2K(RhF6), Rb2K(RgF6), K2Na(RhF6), Rb2Na(RhF6) und Tl2Na(RhF6),” Zschr. Anorg. Allg. Chemie 414, 91–96 (1975).CrossRefGoogle Scholar
  30. 30.
    Q. Zhou and B. J. Kennedy, “High-Temperature Powder Synchrotron Diffraction Studies of Synthetic Cryolite Na2AlF6,” J. Solid State Chem. 177, 654–659 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. V. Pekov
    • 1
  • N. V. Chukanov
    • 2
  • N. N. Kononkova
    • 3
  • N. V. Zubkova
    • 1
  • M. Kh. Rabadanov
    • 4
  • D. Yu. Pushcharovsky
    • 1
  1. 1.Faculty of GeologyMoscow State UniversityMoscowRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  3. 3.Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations