Advertisement

Geology of Ore Deposits

, Volume 50, Issue 7, pp 565–573 | Cite as

Batisivite, V8Ti6[Ba(Si2O)]O28, a new mineral species from the derbylite group

  • L. Z. Reznitsky
  • E. V. Sklyarov
  • T. Armbruster
  • E. V. Galuskin
  • Z. F. Ushchapovskaya
  • Yu. S. Polekhovsky
  • N. S. Karmanov
  • A. A. Kashaev
  • I. G. Barash
New Minerals

Abstract

Batisivite has been found as an accessory mineral in the Cr-V-bearing quartz-diopside metamorphic rocks of the Slyudyanka Complex in the southern Baikal region, Russia. A new mineral was named after the major cations in its ideal formula (Ba, Ti, Si, V). Associated minerals are quartz, Cr-V-bearing diopside and tremolite; calcite; schreyerite; berdesinskiite; ankangite; V-bearing titanite; minerals of the chromite-coulsonite, eskolaite-karelianite, dravite-vanadiumdravite, and chernykhite-roscoelite series; uraninite; Cr-bearing goldmanite; albite; barite; zircon; and unnamed U-Ti-V-Cr phases. Batisivite occurs as anhedral grains up to 0.15–0.20 mm in size, without visible cleavage and parting. The new mineral is brittle, with conchoidal fracture. Observed by the naked eye, the mineral is black and opaque, with a black streak and resinous luster. Batisivite is white in reflected light. The microhardness (VHN) is 1220–1470 kg/mm2 (load is 30 g), the mean value is 1330 kg/mm2. The Mohs hardness is near 7. The calculated density is 4.62 g/cm3. The new mineral is weakly anisotropic and bireflected. The measured values of reflectance are as follows (λ, nm—R max /R min ): 440—17.5/17.0; 460—17.3/16.7; 480—17.1/16.5; 500—17.2/16.6; 520—17.3/16.7; 540—17.4/16.8; 560—17.5/16.8; 580—17.6/16.9; 600—17.7/17.1; 620—17.7/17.1; 640—17.8/17.1; 660—17.9/17.2; 680—18.0/17.3; 700—18.1/17.4. Batisivite is triclinic, space group P \( \overline 1 \) ; the unit-cell dimensions are: a = 7.521(1) Å, b = 7.643(1) Å, c = 9.572(1) Å, α = 110.20°(1), β = 103.34°(1), γ = 98.28°(1), V = 487.14(7) Å3, Z = 1. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)(hkl)] are: 3.09(8)(12\( \overline 2 \) ); 2.84, 2.85(10)(021, 120); 2.64(8)(21\( \overline 3 \) ); 2.12(8)(31\( \overline 3 \) ); 1.785(8)(32\( \overline 4 \) ), 1.581(10)(24\( \overline 2 \) ); 1.432, 1.433(10)(322, 124). The chemical composition (electron microprobe, average of 237 point analyses, wt %) is: 0.26 Nb2O5, 6.16 SiO2, 31.76 TiO2, 1.81 Al2O3, 8.20 VO2, 26.27 V2O3, 12.29 Cr2O3, 1.48 Fe2O3, 0.08 MgO, 11.42 BaO; the total is 99.73. The VO2/V2O3 ratio has been calculated. The simplified empirical formula is (V 4.8 3+ Cr2.2V 0.7 4+ Fe0.3)8.0(Ti5.4V 0.6 4+ )6.0[Ba(Si1.4Al0.5O0.9)]O28. An alternative to the title formula could be a variety (with the diorthogroup Si2O7) V8Ti6[Ba(Si2O7)]O22. Batisivite probably pertains to the V 8 3+ Ti 6 4+ [Ba(Si2O)]O28-Cr 8 3+ Ti 6 4+ [Ba(Si2O)]O28 solid solution series. The type material of batisivite has been deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.

Keywords

Chromite Barite Tourmaline Diopside Solid Solution Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Armbruster, L. Z. Reznitsky, E. V. Sklyarov, and E. V. Galuskin, “The Crystal Structure of Batisivite: A New Mineral from Derbylite Group” (in press).Google Scholar
  2. 2.
    P. R. Bartholomew, F. Mancini, Ch. Cahill, et al., “Zoltaiite, a New Barium-Vanadium Nesosubsilicate Mineral from British Columbia: Description and Crystal Structure,” Am. Mineral. 90(10), 1655–1660 (2005).CrossRefGoogle Scholar
  3. 3.
    P. Berlepsch and T. Armbruster, “The Crystal Structure of Pb2+-Bearing Graeserite. Pb0.14 (Fe, Ti)7AsO12 + x(OH)2 − x, a New Mineral of the Derbylite Group,” Schweiz. Miner. Petr. Mitt. 78(1), 1–9 (1998).Google Scholar
  4. 4.
    N. Döbelin, L. Z. Reznitsky, E. V. Sklyarov, et al., “Schreyerite, V2Ti3O9: New Occurrence and Crystal Structure,” Am. Mineral. 91(1), 196–202 (2006).CrossRefGoogle Scholar
  5. 5.
    I. E. Grey, I. C. Madsen, and D. C. Harris, “Barian Tomichite, Ba0.5 (As2)0.5Ti2 (V, Fe)5O13(OH), Its Crystal Structure and Relationship to Derbylite and Tomichite,” Am. Mineral. 72(1–2), 201–208 (1987).Google Scholar
  6. 6.
    M. Handke and W. Mozgawa, “Model Quasi-Molecule Si2O as an Approach in the IR Spectra Description Glassy and Crystalline Framework Silicates,” J. Mol. Struct. 348, 341–344 (1995).CrossRefGoogle Scholar
  7. 7.
    A. A. Konev, L. Z. Reznitsky, G. D. Feoktistov, et al., Mineralogy of East Siberia on the Turn of XXI Century (New and Rare Minerals) (Intermet-Engineering, Moscow, 2001) [in Russian].Google Scholar
  8. 8.
    P. B. Moore and T. Araki, “Derbylite, Fe43+Ti34+ Sb3+O13(OH), a Novel Close-Packed Oxide Structure,” Neues. Jb. Miner. Abh. 126(3), 292–303 (1976).Google Scholar
  9. 9.
    L. Z. Reznitsky, E. V. Sklyarov, Z. F. Ushchapovskaya, et al., “Vanadiumdravite NaMg3V6[Si6O18][VO3]3 (OH)4, a New Mineral of Tourmaline Group,” Zap. Vseross. Mineral. O-va 130(2), 59–72 (2001).Google Scholar
  10. 10.
    E. P. Vasil’ev, L. Z. Reznitsky, V. N. Vishnyakov, and E. A. Nekrasova, The Slyudyana Crystalline Complex (Nauka, Novosibirsk, 1981) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • L. Z. Reznitsky
    • 1
  • E. V. Sklyarov
    • 1
  • T. Armbruster
    • 2
  • E. V. Galuskin
    • 3
  • Z. F. Ushchapovskaya
    • 1
  • Yu. S. Polekhovsky
    • 4
  • N. S. Karmanov
    • 5
  • A. A. Kashaev
    • 1
  • I. G. Barash
    • 1
  1. 1.Institute of the Earth’s Crust, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Bern UniversityBernSwitzerland
  3. 3.Department of Earth SciencesUniversity of SilesiaSosnowiecPoland
  4. 4.Faculty of GeologySt. Petersburg State UniversitySt. PetersburgRussia
  5. 5.Geological Institute, Siberian BranchRussian Academy of SciencesUlan-UdeRussia

Personalised recommendations