Geology of Ore Deposits

, Volume 49, Issue 8, pp 739–751 | Cite as

Aqualite, a new mineral species of the eudialyte group from the Inagli alkaline pluton, Sakha-Yakutia, Russia, and the problem of oxonium in hydrated eudialytes

  • A. P. Khomyakov
  • G. N. Nechelyustov
  • R. K. Rastsvetaeva


Aqualite, a new eudialyte-group mineral from hydrothermally altered peralkaline pegmatites of the Inagli alkaline pluton (Sakha-Yakutia, Russia) is described in this paper. Natrolite, microcline, eckermanite, aegirine, batisite, innelite, lorezenite, thorite, and galena are associated minerals. Aqualite occurs as isometric crystals up to 3-cm across. The color is pale pink, with a white streak and vitreous luster. The mineral is transparent. The fracture is conchoidal. The mineral is brittle; no cleavage or parting is observed. The Mohs’ hardness is 4 to 5. The density is 2.58(2) g/cm3 (measured by the volumetric method) and 2.66 g/cm3 (calculated). Aqualite is optically uniaxial (+), α = 1.569(1) and β = 1.571(1). The mineral is pleochroic from colorless to pale pink on X and pink on Y, α < β. Aqualite is weakly fluorescent with a dull yellow color under ultraviolet light. The mineral is stable in 50% HCl and HNO3 at room temperature. Weight loss after ignition at 500°C is 9.8%. Aqualite is monoclinic, and the space group is R3. The unit-cell dimensions are a = 14.078(3) Å, c = 31.24(1) Å, V = 5362 Å3, and Z = 3. The strongest reflections in the X-ray powder pattern [d, Å (I)(hkl)] are: 4.39(100)(2005), 2.987(100)(315), 2.850(79)(404), 10.50(44)(003), 6.63(43)(104), 7.06(42)(110), 3.624(41)(027), and 11.43(39)(101). The chemical composition (electron microprobe, H2O determined with the Penfield method) is as follows (wt %): 2.91 Na2O, 1.93 K2O, 11.14 CaO, 1.75 SrO, 2.41 BaO, 0.56 FeO, 0.30 MnO, 0.17 La2O3, 0.54 Ce2O3, 0.36 Nd2O3, 0.34 Al2O3, 52.70 SiO2, 12.33 ZrO2, O.78 TiO2, 0.15 Nb2O5; 1.50 Cl, 9.93 H2O,-O=Cl2 0.34; where the total is 99.46. The empirical formula calculated on the basis of Si + Zr + Ti + Al + Nb = 29 apfu is as follows: [(H3O)7.94Na2.74K1.20Sr0.49Ba0.46Fe0.23Mn0.12]Σ13.18(Ca5.79REE0.19)Σ5.98 (Zr2.92Ti0.08)Σ3.0(Si25.57Ti0.21Al0.19Nb0.03)S26.0[O66.46(OH)5.54]Σ72.0 [(OH)2.77Cl1.23]Σ4.0. The simplified formula is (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66(OH)9Cl. Aqualite differs from typical eudialyte by the extremely low contents of Na and Fe, with more than 50% Na being replaced with the (H3O)+ group. The presence of oxonium ions is confirmed by IR spectroscopic and X-ray single-crystal diffraction analysis. The mineral is compared with five structurally studied high-oxonium analogues from alkaline plutons of other regions. All of these minerals were formed at a relatively low temperature through the ion-exchange transformation of “protoeudialytes”; the successor minerals inherited the principal structural and compositional features of the precursor minerals. The name aqualite is derived from the Latin aqua in reference to its specific chemical composition. The type material of aqualite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow.


Kola Peninsula Mineral Species Cation Layer Alkaline Pluton Khibiny Pluton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. A. Ageeva, B. E. Borutsky, and V. V. Khangulov, “Eudialyte As a Mineralogical and Geochemical Indicator of Metasomatic Processes in the Formation of Poikilitic Nepheline Syenite of the Khibiny Pluton,” Geokhimiya 40(10), 1098–1105 (2002) [Geochem. Int. 40 (10), 997–1003 (2002)].Google Scholar
  2. 2.
    N. V. Chukanov, I. V. Pekov, A. E. Zadov, et al., “Ikranite (Na,H3O)15(Ca,Mn,REE)6Fe23+ Zr3(□,Zr)(□,Si)Si24O66(O,OH)6Cl · nH2O and Raslakite Na15Ca3Fe3(Na,Zr)3Zr3(Si,Nb)(Si25O73)(OH,H2O)3(Cl,OH): New Minerals of the Eudialyte Group from the Lovozero Pluton, Kola Peninsula,” Zap. Vseross. Mineral. O-va 132(5), 22–33 (2003) [in Russian].Google Scholar
  3. 3.
    I. A. Ekimenkova, R. K. Rastsvetaeva, and N. V. Chukanov, “Crystal Structure of Oxonium-Bearing Analogue of Eudialyte,” Dokl. Akad. Nauk 371(5), 625–628 (2000) [Dokl. Chemistry 371 (4/6), 65–69 (2000)].Google Scholar
  4. 4.
    A. F. Efimov, S. M. Kravchenko, and E. V. Vlasova, “On Mineralogy of Alkaline Pegmatites of the Inagli Pluton,” Tr. IMGRE, No. 16, 141–175 (1963).Google Scholar
  5. 5.
    V. G. Feklichev, “On Chemical Composition and Chemical Formula of Eudialites from the Khibiny and Other Regions,” in Experimental-Methodical Study of Ore Minerals (Nauka, Moscow, 1965), pp. 195–213 [in Russian].Google Scholar
  6. 6.
    V. G. Feklichev, “Interrelations between Composition and Properties of the Eudialyte-Group Mineral,” in New Data on Minerals of the USSR (Nauka, Moscow, 1979), pp. 126–144 [in Russian].Google Scholar
  7. 7.
    O. Johnsen and J. D. Grice, “The Crystal Chemistry of the Eudialyte Group,” Can. Mineral. 37, 865–891 (1999).Google Scholar
  8. 8.
    O. Johnsen, J. D. Grice, and R. A. Gault, “Oneillite: A New Ca-Deficient and REE-Rich Member of the Eudialyte Group from Mont Saint-Hilaire, Quebec, Canada,” Can. Mineral. 37, 1295–1301 (1999).Google Scholar
  9. 9.
    O. Johnsen, G. Ferraris, and R. A. Gault, et al., “The Nomenclature of Eudialyte-Group Minerals,” Can. Mineral. 41, 785–794 (2003).CrossRefGoogle Scholar
  10. 10.
    A. P. Khomyakov, Mineralogy of Hyperagpaitic Alkaline Rocks (Nauka, Moscow, 1990) [in Russian].Google Scholar
  11. 11.
    A. P. Khomyakov, Mineralogy of Hyperagpaitic Alkaline Rocks (Clarendon Press, Oxford, 1995).Google Scholar
  12. 12.
    A. P. Khomyakov, “Transformation Mineral Species and Their Use in Palaeomineralogical Reconstructions,” in Proceedings of the 30th International Geological Congress (Bejing, China, 1996), Vol. 2/3, p. 450.Google Scholar
  13. 13.
    A. P. Khomyakov, “Concept on Transformation Mineral Forms and Variations,” in Proceedings of IX Conference of All-Russia Mineralogical Society on Mineralogical Society and Mineralogical Science on the Turn of the XX Century (St. Petersburg, 1999) [in Russian].Google Scholar
  14. 14.
    A. P. Khomyakov, “The Second Chapter” in Mineralogy and Crystal Chemistry of Eudialyte Group, in Proceedings of III International Mineralogical Seminar on New Ideas and Concepts in Mineralogy (Syktyvkar, 2002a) [in Russian].Google Scholar
  15. 15.
    A. P. Khomyakov, “High-Ordered Amphoteric Silicates of Eudialite Group As Indicators of Hyperalkaline Conditions of Endogenic Mineral Formation,” in Proceedinds of All-Russian Seminar with Participation of CIS Countries on Geochemistry of Igneous Rocks (Moscow, 2002b) [in Russian].Google Scholar
  16. 16.
    A. P. Khomyakov, “New Chapter in the Mineralogy and Crystal Chemistry of the Eudialyte Group,” in Proceedings of the 18th IMA Gen. Meeting (Edinburgh, 2002c), pp. 140–141.Google Scholar
  17. 17.
    A. P. Khomyakov, “Crystal Chemical Systematic of the Eudialyte-Group Minerals,” in Proceedings of 32nd International Geological Congress (Florence, Italy, 2004a), pp. 309–310.Google Scholar
  18. 18.
    A. P. Khomyakov, “Minerals-Endemics As Products of Geocatalysis and Indicators of Formation of Economic Hyperconcentrations of Metals in the Lithosphere,” in Proceedings of X Conference of the All-Russia Mineralogical Society on Mineralogy in the Whole Space of This Word) (St. Petersburg, 2004b), pp. 234–235 [in Russian].Google Scholar
  19. 19.
    A. P. Khomyakov, “Crystallochemical Systematics of the Eudialyte Group,” in Proceedings of III International Symposium on Mineralogical Variety—Research and Protection (Sofia, 2005) [in Russian].Google Scholar
  20. 20.
    A. P. Khomyakov and N. P. Yushkin, “Principle of Inheritance in Crystallogenesis,” Dokl. Akad. Nauk SSSR 256(5), 1229–1233 (1981).Google Scholar
  21. 21.
    A. P. Khomyakov, G. N. Nechelyustov, and A. V. Arakcheeva, “Rastsvetaevite Na27K8Ca12Fe3Zr6Si4[Si3O9]4[Si9O27]4(O,OH,H2O)6Cl2: New Mineral Species with Modular Eudialyte-Like Structure and Crystallochemical Classification of the Eudialyte Group,” Zap. Ross. Mineral. O-va 135(1), 49–65 (2006).Google Scholar
  22. 22.
    E. E. Kostyleva, “Eudialyte and Eucolite,” in Minerals of the Khibiny and Lovozero Tundras (Akad. Nauk SSSR, Moscow, 1937), pp. 289–302 [in Russian].Google Scholar
  23. 23.
    E. E. Kostyleva-Labuntsova, B. E. Borutsky, M. N. Sokolova, et al., Mineralogy of the Khibiny Pluton: Minerals (Nauka, Moscow, 1978), Vol. 2 [in Russian].Google Scholar
  24. 24.
    I. V. Pekov, Doctoral Dissertation in Geology and Mineralogy (Moscow, 2005).Google Scholar
  25. 25.
    I. I. Plyusnina, Infrared Spectrum of Minerals (Moscow State Univ., Moscow, 1977) [in Russian].Google Scholar
  26. 26.
    R. K. Rastsvetaeva and A. P. Khomyakov, “Modular Structure of a Potassium-Rich Analogue of Eudialyte with a Doubled Parameter c,” Kristallografiya 46(4), 715–721 (2001) [Crystallogr. Rep. 46 (4), 647–653 (2001)].Google Scholar
  27. 27.
    R. K. Rastsvetaeva and A. P. Khomyakov, “Structural Characteristics of Na,Fe-Decationated Eudialyte with R3 Symmetry,” Kristallografiya 47(2), 267–271 (20022) [Crystallogr. Rep. 47 (2), 232–236 (2002)].Google Scholar
  28. 28.
    R. K. Rastsvetaeva and A. P. Khomyakov, “Crystal Chemistry of Modular Eudialytes,” Kristallografiya 48(6), S78–S90 (2003) [Crystallogr. Rep. 48 Supp., (1), 69 (2003)].Google Scholar
  29. 29.
    R. K. Rastsvetaeva, A. P. Khomyakov, and G. Chapuis, “Crystal Structure and Crystal-Chemical Features of a New Ti-Rich Member of the Eudialyte Family,” Zschr. Kristallogr. 214, 271–278 (1999).CrossRefGoogle Scholar
  30. 30.
    R. K. Rastsvetaeva, M. N. Sokolova, and B. E. Borutsky, “Crystalline Structure of Potassium-Oxonium Eudialyte,” Kristallografiya 35(6), 1381–1387 (1990a).Google Scholar
  31. 31.
    R. K. Rastsvetaeva, A. P. Khomyakov, V. I. Andrianov, and A. I. Gusev, “Crystalline Structure of Alluaivyte,” Dokl. Akad. Nauk SSSR 312(6), 1379–1383 (1990b).Google Scholar
  32. 32.
    R. K. Rastsvetaeva, A. P. Khomyakov, S. V. Chizhevskaya, and T. V. Anoprienko, “Ordering in Eudialytes with Various Degree of Hydratation,” in Proceedings of International Seminar on Phase Transformation in Solid Solutions and Alloys (Sochi, 2002), Pt. 2, pp. 59–62.Google Scholar
  33. 33.
    K. A. Rozenberg, R. K. Rastsvetaeva, and A. P. Khomyakov, “Decationized and Hydrated Eudialytes. Oxonium Problem,” Eur. J. Mineral. 17, 875–882 (2005).CrossRefGoogle Scholar
  34. 34.
    M. N. Sokolova, B. E. Borutsky, D. K. Arkhipenko, et al., “Potassium-Oxonium Eudialyte from the Khibiny, Kola Peninsula,” Dokl. Akad. Nauk SSSR 318(3), 712–716 (1991).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • A. P. Khomyakov
    • 1
  • G. N. Nechelyustov
    • 2
  • R. K. Rastsvetaeva
    • 3
  1. 1.Institute of Mineralogy, Geochemistry, and Crystal Chemistry of Rare ElementsMoscowRussia
  2. 2.All-Russia Institute of Mineral ResourcesMoscowRussia
  3. 3.Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations