A Convenient One-Pot Synthesis of Chalcones and Their Derivatives and Their Antimicrobial Activity

Abstract

A series of chalcones were synthesized by base-catalyzed Clasien-Schmidt condensation of substituted benzaldehydes and substituted acetophenones at room temperature. The addition of hydrazine hydrate and hydroxylamine hydrochloride across the double bond of the obtained chalcones gave pyrazole and isoxazole derivatives, respectively. All the synthesized compounds were characterized by 1H and 13C NMR and FT-IR spectroscopy and screened for their in vitro antimicrobial activity against two bacterial strains, Pseudomonas aeruginosa and Pseudomonas oryzihabitans using Ciprofloxacin as standard drug. 1-(2-Methoxyphenyl)-3-phenylprop-2-en-1-one and 1-(4-chlorophenyl)-3-phenylprop-2-en-1-one showed significant activity against both bacterial strains and hence proved to be potent antimicrobial agents.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Scheme
Scheme

REFERENCES

  1. 1

    Shehry, M.F.E., Ghorab, M.M., Abbas, S.Y., Fayed, E.A., Shedid, S.A., and Ammar, Y.A., Eur. J. Med. Chem., 2018, vol. 143, p. 1463. https://doi.org/10.1016/j.ejmech.2017.10.046

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Anamika, Utreja, D., Ekta, Jain, N., and Sharma, S., Curr. Org. Synth., 2018, vol. 22, p. 2507. https://doi.org/10.2174/1385272822666181029102140

    CAS  Article  Google Scholar 

  3. 3

    Gaonkar, S.L. and Vignesh, U.N., Res. Chem. Intermed., 2017, vol. 43, p. 6043. https://doi.org/10.1007/s11164-017-2977-5

    CAS  Article  Google Scholar 

  4. 4

    Gupta, D. and Jain, D.K., J. Adv. Pharm. Technol. Res., 2015, vol. 6, p. 114. https://doi.org/10.4103/2231-4040.161507

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Kaur, J., Utreja, D., Dhillon, N.K., and Sharma, S., Lett. Org. Chem., 2018, vol. 15, p. 870. https://doi.org/10.2174/1570178615666180330155049

    CAS  Article  Google Scholar 

  6. 6

    Kaur, J., Utreja, D., Dhillon, N.K., and Sharma, S., Lett. Org. Chem., 2019, vol. 16, p. 759. https://doi.org/10.2174/1570178616666190219131042

    CAS  Article  Google Scholar 

  7. 7

    Tran, T.D., Nguyen, T.T.N., Do, T.H., Huynh, T.N.P., Tran, C.D., and Thai, K.M., Molecules, 2012, vol. 17, p. 6684. https://doi.org/10.3390/molecules17066684

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Kurt, B.Z., Kandas, N.O., Dag, A., Sonmez, F., and Kucukislamoglu, M., Arab. J. Chem., 2020, vol. 13, p. 1120. https://doi.org/10.1016/j.arabjc.2017.10.001

    CAS  Article  Google Scholar 

  9. 9

    Kar, S., Mishra, R.K., Pathak, A., Dikshit, A., and Rao, G.N., J. Mol. Struct., 2018, vol. 1156, p. 433. https://doi.org/10.1016/j.molstruc.2017.12.002

    CAS  Article  Google Scholar 

  10. 10

    Maria, K., Dimitra, H.-L., and Maria, G., Med. Chem., 2008, vol. 4, p. 586. https://doi.org/10.2174/157340608786242070

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Jain, N., Utreja, D., and Dhillon, N.K., Russ. J. Org. Chem., 2019, vol. 55, p. 845. https://doi.org/10.1134/S1070428019060150

    CAS  Article  Google Scholar 

  12. 12

    Jeon, K.H., Kwak, S.Y., Kwon, Y., and Na, Y., Bioorg. Med. Chem., 2016, vol. 24, p. 5921. https://doi.org/10.1016/j.bmc.2016.09.051

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Hayat, F., Moseley, E., Salahuddin, A., Zyl, R.L.V., and Azam, A., Eur. J. Med. Chem., 2011, vol. 46, p. 1897. https://doi.org/10.1016/j.ejmech.2011.02.004

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Kaur, J., Utreja, D., Ekta, Jain, N., and Sharma, S., Curr. Org. Synth., 2019, vol. 16, p. 17. https://doi.org/10.2174/1570179415666181113144939

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Matos, M.J., Rodriguez, S.V., Uriarte, E., and Santana, L., Expert Opin. Ther. Pat., 2014, vol. 25, p. 1. https://doi.org/10.1517/13543776.2014.995627

    CAS  Article  Google Scholar 

  16. 16

    Wei, Z.Y., Chi, K.Q., Yu, Z.K., Liu, H.Y., Sun, L.P., Zheng, C.J., and Piao, H.R., Bioorg. Med. Chem. Lett., 2016, vol. 26, p. 5920. https://doi.org/10.1016/j.bmcl.2016.11.001

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Tajuddeen, N., Isah, M.B., Suleiman, F.R., Heerden, V., and Ibrahim, M.A., Int. J. Antimicrob. Agents, 2018, vol. 51, p. 311. https://doi.org/10.1016/j.ijantimicag.2017.06.010

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Koudokpon, H., Armstrong, N., Dougnon, T.V., Fah, L., Hounsa, E., Bankole, H.S., Loko, F., Chabriere, E., and Rolain, J.M., BioMed. Res. Int., 2018, vol. 2018, article ID 1453173. https://doi.org/10.1155/2018/1453173

  19. 19

    Jain, P., Utreja, D., and Sharma, P., J. Heterocycl. Chem., 2020, vol. 57, p. 428. https://doi.org/10.1002/jhet.3799

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. Utreja.

Ethics declarations

The authors declared no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Salotra, R., Utreja, D. & Sharma, P. A Convenient One-Pot Synthesis of Chalcones and Their Derivatives and Their Antimicrobial Activity. Russ J Org Chem 56, 2207–2211 (2020). https://doi.org/10.1134/S1070428020120258

Download citation

Keywords:

  • chalcones
  • Clasien–Schmidt condensation
  • antimicrobial activity
  • Pseudomonas aeruginosa
  • Pseudomonas oryzihabitans