N-Alkylation of Imidazoles with Dialkyl and Alkylene Carbonates

Abstract

The reactions of imidazoles with a series of dialkyl and alkylene carbonates afforded the corresponding N-alkyl- and N-(hydroxyalkyl)imidazoles with high yields. The reactivity of dialkyl carbonates decreases in the series dimethyl > diethyl > dibutyl carbonate. Ethylene carbonate is a more efficient alkylating agent than trimethylene carbonate. The mechanisms of alkylation of imidazole with dimethyl carbonate and ethylene carbonate were studied by DFT quantum chemical calculations at the B3LYP/6-311++G(d,p) level of theory.

This is a preview of subscription content, access via your institution.

Scheme
Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.

REFERENCES

  1. 1

    Aricò, F. and Tundo, P., Russ. Chem. Rev., 2010, vol. 79, p. 479. https://doi.org/10.1070/rc2010v079n06abeh004113

    Article  Google Scholar 

  2. 2

    Kalhoff, J., Eshetu, G.G., Bresser, D., and Passerini, S., ChemSusChem, 2015, vol. 8, p. 2154. https://doi.org/10.1002/cssc.201500284

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Clagett, D.C. and Shafer, S.J., Polym. Eng. Sci., 1985, vol. 25, p. 458. https://doi.org/10.1002/pen.760250805

    CAS  Article  Google Scholar 

  4. 4

    Tundo, P., Musolino, M., and Aricò, F., Green Chem., 2018, vol. 20, p. 28. https://doi.org/10.1039/c7gc01764b

    CAS  Article  Google Scholar 

  5. 5

    Ouk, S., Thiébaud, S., Borredon, E., and Chabaud, B., Synth. Commun., 2005, vol. 35, p. 3021. https://doi.org/10.1080/00397910500278578

    CAS  Article  Google Scholar 

  6. 6

    Carafa, M., Distaso, M., Mele, V., Trani, F., and Quaranta, E., Tetrahedron Lett., 2008, vol. 49, p. 3691. https://doi.org/10.1016/j.tetlet.2008.03.129

    CAS  Article  Google Scholar 

  7. 7

    Zhao, S.Y., Zhang, H.Q., Zhang, D.Q., and Shao, Z.Y., Synth. Commun., 2012, vol. 42, p. 128. https://doi.org/10.1080/00397911.2010.523151

    CAS  Article  Google Scholar 

  8. 8

    Shieh, W.C., Dell, S., Bach, A., Repič, O., and Blacklock, T.J., J. Org. Chem., 2003, vol. 68, p. 1954. https://doi.org/10.1021/jo0266644

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Shieh, W.C., Lozanov, M., Loo, M., Repič, O., and Blacklock, T.J., Tetrahedron Lett., 2003, vol. 44, p. 4563. https://doi.org/10.1016/S0040-4039(03)00992-4

    CAS  Article  Google Scholar 

  10. 10

    Shieh, W.C., Lozanov, M., and Repič, O., Tetrahedron Lett., 2003, vol. 44, p. 6943. https://doi.org/10.1016/S0040-4039(03)01711-8

    CAS  Article  Google Scholar 

  11. 11

    Jiang, X., Tiwari, A., Thompson, M., Chen, Z., Cleary, T.P., and Lee, T.B.K., Org. Process Res. Dev., 2001, vol. 5, p. 604. https://doi.org/10.1021/op0102215

    CAS  Article  Google Scholar 

  12. 12

    Carafa, M., Mele, V., and Quaranta, E., Green Chem., 2012, vol. 14, p. 217. https://doi.org/10.1039/c1gc15984d

    CAS  Article  Google Scholar 

  13. 13

    Carafa, M., Iannone, F., Mele, V., and Quaranta, E., Green Chem., 2012, vol. 14, p. 3377. https://doi.org/10.1039/c2gc36103e

    CAS  Article  Google Scholar 

  14. 14

    Shieh, W.C., Dell, S., and Repič, O., Org. Lett., 2001, vol. 3, p. 4279. https://doi.org/10.1021/ol016949n

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Hu, X., Dong, W., Xie, A., Feng, L., Zhang, Q., and Liu, Y., J. Heterocycl. Chem., 2014, vol. 52, p. 1483. https://doi.org/10.1002/jhet.2179

    CAS  Article  Google Scholar 

  16. 16

    Banfi, A., Sala, A., Soresinetti, P.A., and Russo, G., J. Heterocycl. Chem., 1990, vol. 27, p. 215. https://doi.org/10.1002/jhet.5570270219

    CAS  Article  Google Scholar 

  17. 17

    Tilstam, U., Org. Process Res. Dev., 2012, vol. 16, p. 1974. https://doi.org/10.1021/op3002068

    CAS  Article  Google Scholar 

  18. 18

    Kamber, N.E., Jeong, W., Waymouth, R.M., Pratt, R.C., Lohmeijer, B.G.G., and Hedrick, J.L., Chem. Rev., 2007, vol. 107, p. 5813. https://doi.org/10.1021/cr068415b

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Nederberg, F., Lohmeijer, B.G.G., Leibfarth, F., Pratt, R.C., Choi, J., Dove, A.P., Waymouth, R.M., and Hedrick, J.L., Biomacromolecules, 2007, vol. 8, p. 153. https://doi.org/10.1021/bm060795n

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Neese, F., Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2012, vol. 2, p. 73. https://doi.org/10.1002/wcms.81

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the facilities of the “Spectroscopy and Analysis of Organic Compounds” joint center. Quantum chemical calculations were performed using Uran supercomputer at the Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences.

Funding

This study was performed in the framework of state assignment for Postovsky Institute of Organic Synthesis (Ural Branch, Russian Academy of Sciences), as well as under financial support by the Ministry of Science and Higher Education of the Russian Federation (project no. AAAA-A20-120061990010-7).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Pestov.

Ethics declarations

The authors declare the absence of conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabov, I.S., Khamidullina, L.A., Puzyrev, I.S. et al. N-Alkylation of Imidazoles with Dialkyl and Alkylene Carbonates. Russ J Org Chem 56, 2079–2086 (2020). https://doi.org/10.1134/S1070428020120052

Download citation

Keywords:

  • dialkyl carbonates
  • alkylene carbonates
  • imidazoles
  • alkylation