Microwave-Induced Enantiospecific Synthesis of trans-(3R,4R)-3-Acetoxy-4-aryl-1-(chrysen-6-yl)azetidin-2-ones via the Staudinger Cycloaddition Reaction of (+)-Car-3-ene with Polyaromatic Imines

Abstract

The enantiospecific synthesis of 3-acetoxy-trans-β-lactams via the Staudinger [2+2] cycloaddition reaction of polyaromatic imines with bicyclic (+)-car-3-ene was investigated. The sterically hindered polyaromatic substituent at the N1 position in the imines plays a significant role, directing the cycloaddition reaction to stereoselective formation of trans-(3R,4R)-N-azetidin-2-ones. The results as described herein are highly unprecedented, since the synthesis of a single optically active trans-β-lactam, starting from a chiral ketene, has never been reported previously.

This is a preview of subscription content, log in to check access.

Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. 1

    Dürckheimer, W., Blumbach, J., Lattrell, R., and Scheunemann, K.H., Angew. Chem., Int. Ed., 1985, vol. 24, p. 180. https://doi.org/10.1002/anie.198501801

    Article  Google Scholar 

  2. 2

    Demain, A.L. and Elander, R.P., Antonie van Leeuwenhoek, 1999, vol. 75, p. 5. https://doi.org/10.1023/A:1001738823146

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Janecki, T., Błaszczyk, E., Studzian, K., Janecka, A., Krajewska, U., and Rózalski, M., J. Med. Chem., 2005, vol. 48, p. 3516. https://doi.org/10.1021/jm048970a

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Tenover, F.C. Am. J. Infect. Control, 2006, vol. 34, p. S3. https://doi.org/10.1016/j.ajic.2006.05.219

  5. 5

    Levy, S.B. and Marshall, B., Nat. Med., 2004, vol. 10, p. S122. https://doi.org/10.1038/nm1145

  6. 6

    Alcaide, B. and Almendros, P., Curr. Org. Chem., 2005, vol. 6, p. 245. https://doi.org/10.2174/1385272024605050

    Article  Google Scholar 

  7. 7

    Staudinger, H., Liebigs Ann., 1907, vol. 356, p. 51. https://doi.org/10.1002/jlac.19073560106

    CAS  Article  Google Scholar 

  8. 8

    Palomo, C., Aizpurua, J., Ganboa, I., and Oiarbide, M., Curr. Med. Chem., 2012, vol. 11, p. 1837. https://doi.org/10.2174/0929867043364900

    Article  Google Scholar 

  9. 9

    Singh, G.S., Tetrahedron, 2003, vol. 59, p. 7631. https://doi.org/10.1016/S0040-4020(03)01099-8

    CAS  Article  Google Scholar 

  10. 10

    Alcaide, B. and Almendros, P., Chem. Soc. Rev., 2001, vol. 30, p. 226. https://doi.org/10.1039/B007908L

    CAS  Article  Google Scholar 

  11. 11

    Cooper, R.D.G., Daugherty, B.W., and Boyd, D.B., PureAppl. Chem., 1987, vol. 59, p. 485. https://doi.org/10.1351/pac198759030485

    CAS  Article  Google Scholar 

  12. 12

    van der Steen, F.H. and van Koten, G., Tetrahedron, 1991, vol. 47, p. 7503. https://doi.org/10.1016/S0040-4020(01)88276-4

    CAS  Article  Google Scholar 

  13. 13

    Dekeukeleire, S., D’Hooghe, M., and De Kimpe, N., J. Org. Chem., 2009, vol. 74, p. 1644. https://doi.org/10.1021/jo802459j

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Kawabata, T., Kimura, Y., Ito, Y., Terashima, S., Sasaki, A., and Sunagawa, M., Tetrahedron, 1988, vol. 44, p. 2149. https://doi.org/10.1016/S0040-4020(01)81722-1

    CAS  Article  Google Scholar 

  15. 15

    Bose, A.K., Manhas, M.S., van der Veen, J.M., Bari, S.S., and Wagle, D.R., Tetrahedron, 1992, vol. 48, p. 4831. https://doi.org/10.1016/S0040-4020(01)81577-5

    CAS  Article  Google Scholar 

  16. 16

    Palomo, C., Cossío, F.P., and Cuevas, C., TetrahedronLett., 1991, vol. 32, p. 3109. https://doi.org/10.1016/0040-4039(91)80702-8

    CAS  Article  Google Scholar 

  17. 17

    Arun, M., Joshi, S.N., Puranik, V.G., Bhawal, B.M., and Deshmukh, A.R.A.S., Tetrahedron, 2003, vol. 59, p. 2309. https://doi.org/10.1016/S0040-4020(03)00239-4

    CAS  Article  Google Scholar 

  18. 18

    Deshmukh, A.R.A.S., Jayanthi, A., Thiagarajan, K., Puranik, V.G., and Bhawal, B.M., Synthesis, 2004, p. 2965. https://doi.org/10.1055/s-2004-834890

  19. 19

    Shaikh, A.L., Esparza, O., and Banik, B.K., Helv. Chim.Acta, 2011, vol. 94, p. 2188. https://doi.org/10.1002/hlca.201100225

    CAS  Article  Google Scholar 

  20. 20

    Banik, I., Becker, F.F., and Banik, B.K., J. Med. Chem., 2003, vol. 46, p. 12. https://doi.org/10.1021/jm0255825

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Banik, B.K., Becker, F.F., and Banik, I., Bioorg. Med.Chem., 2004, vol. 12, p. 2523. https://doi.org/10.1016/j.bmc.2004.03.033

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Banik, B.K., Banik, I., and Becker, F.F., Bioorg. Med.Chem., 2005, vol. 13, p. 3611. https://doi.org/10.1016/j.bmc.2005.03.044

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Banik, B.K., Lecea, B., Arrieta, A., De Cózar, A., and Cossío, F.P., Angew. Chem., Int. Ed., 2007, vol. 46, p. 3028. https://doi.org/10.1002/anie.200605231

    CAS  Article  Google Scholar 

  24. 24

    Banik, B.K., Banik, I., and Becker, F.F., Eur. J. Med.Chem., 2010, vol. 45, p. 846. https://doi.org/10.1016/j.ejmech.2009.11.024

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Banik, B.K., Ghatak, A., and Becker, F.F., J. Chem.Soc. Perkin Trans. 1, 2000, p. 2179. https://doi.org/10.1039/B002833I

  26. 26

    Jiao, L., Liang, Y., and Xu, J., J. Am. Chem. Soc., 2006, vol. 128, p. 6060. https://doi.org/10.1021/ja056711k

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Liang, Y., Jiao, L., Zhang, S., Yu, Z.X., and Xu, J., J. Am.Chem. Soc., 2009, vol. 131, p. 1542. https://doi.org/10.1021/ja808046e

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Li, B., Wang, Y., Du, D.M., and Xu, J., J. Org.Chem., 2007, vol. 72, p. 990. https://doi.org/10.1021/jo0622734

    CAS  Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

BKB gratefully acknowledges the funding support from the USA NIH, USA NCI, and USA Kleberg Foundation. RNY acknowledges the support of VBS Purvanchal University during the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. K. Banik.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A.L., Yadav, R.N. & Banik, B.K. Microwave-Induced Enantiospecific Synthesis of trans-(3R,4R)-3-Acetoxy-4-aryl-1-(chrysen-6-yl)azetidin-2-ones via the Staudinger Cycloaddition Reaction of (+)-Car-3-ene with Polyaromatic Imines. Russ J Org Chem 56, 910–915 (2020). https://doi.org/10.1134/S1070428020050267

Download citation

Keywords:

  • enantioselective synthesis
  • ketenes
  • polyaromatic imines
  • cycloaddition reaction