Skip to main content
Log in

Sm-Catalyzed Synthesis and Biological Activity of Acyclic and Cyclic Azadiperoxides

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Acyclic diaminodiperoxides and cyclic azadiperoxides are synthesized by the reaction of 1,1-bis-(hydroperoxy)cycloalkanes with formaldehyde and primary arylamines in the presence of Sm-containing catalysts [SmCl3·6H2O, Sm(NO3)3·6H2O, SmCl3/γ-Al2O3, and Sm(NO3)3/γ-Al2O3]. The chemoselectivity of this three-component reaction depends on the position of the substituent (F,Cl) in the phenyl ring of the primary arylamines. Signals of the cyclic aminoperoxides were assigned considering the conformation dynamics of the tetraoxazocane cycle with two rigid peroxide bonds. The structure of the acyclic diaminodiperoxides was reliably determined by X-ray diffraction analysis. The synthesized acyclic diaminodiperoxides were found to exhibit anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amewu, R.K., Chadwick, J., Hussain, A., Panda, S., Rinki, R., Janneh, O., Ward, S.A., Miguel, C., Burrell-Saward, H., Vivas, L., and O Neill, P.M., Bioorg. Med. Chem., 2013, vol. 21, p. 7392. doi https://doi.org/10.1016/j.bmc.2013.09.047

    Article  CAS  PubMed  Google Scholar 

  2. Tang, Y., Dong, Y., Karle, J.M., DiTusa, C.A., and Vennerstrom, J.L., J. Org. Chem., 2004, vol. 69, p. 6470. doi https://doi.org/10.1021/jo040171c

    Article  CAS  PubMed  Google Scholar 

  3. Dong, Y., Chollet, J., Matile, H., Charman, S.A., Chiu, F.C.K., Charman, W.N., Scorneaux, B., Urwyler, H., Tomas, J.S., Scheurer, C., Snyder, C., Dorn, A., Wang, X., Karle, J.M., Tang, Y., Wittlin, S., Brun, R., and Vennerstrom, J.L., J. Med. Chem., 2005, vol. 48, p. 4953. doi https://doi.org/10.1021/jm049040u

    Article  CAS  PubMed  Google Scholar 

  4. Dong, Y., Tang, Y., Chollet, J., Matile, H., Wittlin, S., Charman, S.A., Charman, W.N., Tomas, J.S., Scheurer, C., Snyder, C., Scorneaux, B., Bajpai, S., Alexander, S.A., Wang, X., Padmanilayam, M., Cheruku, S.R., Brun, R., and Vennerstrom, J.L., Bioorg. Med. Chem., 2006, vol. 14, p. 6368. doi https://doi.org/10.1016/j.bmc.2006.05.041

    Article  CAS  PubMed  Google Scholar 

  5. Tang, Y., Dong, Y., Wittlin, S., Charman, S.A., Chollet, J., Chiu, F.C.K., Charman, W.N., Matile, H., Urwyler, H., Dorn, A., Bajpai, S., Wang, X., Padmanilayam, M., Karle, J.M., Brun, R., and Vennerstrom, J.L., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 1260. doi https://doi.org/10.1016/j.bmcl.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  6. Zheng, W., Wojtas, L., and Antilla, J.C., Angew Chem., Int Ed., 2010, vol. 49, p. 6589. doi https://doi.org/10.1002/anie.201002972

    Article  CAS  Google Scholar 

  7. Blumenthal, H. and Liebscher, J., Arkivoc, 2009, vol. xi, p. 204. doi https://doi.org/10.3998/ark.5550190.0010.b18

    Google Scholar 

  8. Kienle, M., Argyrakis, W., Baro, A., and Laschat, S., Tetrahedron Lett., 2008, vol. 49, p. 1971. doi https://doi.org/10.1016/j.tetlet.2008.01.090

    Article  CAS  Google Scholar 

  9. Rebek, J. and McCready, R., J. Am. Chem Soc., 1980, vol. 102, p. 5602. doi https://doi.org/10.1021/ja00537a033

    Article  CAS  Google Scholar 

  10. Rebek, J., Heterocycles, 1981, vol. 15, p. 517. doi https://doi.org/10.3987/S-1981-01-0517

    Article  CAS  Google Scholar 

  11. Schmidt, U. and Hausler, J., Angew. Chem., Int. Ed., 1976, vol. 15, p. 497. doi https://doi.org/10.1002/anie.197604971

    Article  Google Scholar 

  12. Casteel, D.A., Nat. Prod. Rep., 1999, vol. 16, p. 55. doi https://doi.org/10.1039/A705725C

    Article  Google Scholar 

  13. Chung, L.W., Hayashi, S., Lundberg, M., Nakatsu, T., Kato, H., and Morokuma, K., J. Am. Chem. Soc., 2008, vol. 130, p. 12880. doi https://doi.org/10.1021/ja8052464

    Article  CAS  PubMed  Google Scholar 

  14. Oliveira, R., Guedes, R.C., Meireles, P., Albuquerque, I.S., Goncalves, L.M., Pires, E., Bronze, M.R., Gut, J., Rosenthal, P.J., Prudencio, M., Moreira, R., O. Neill, P.M., and Lopes, F., J. Med. Chem., 2014, vol. 57, p. 4916. doi https://doi.org/10.1021/jm5004528

    Article  CAS  PubMed  Google Scholar 

  15. Makhmudiyarova, N.N., Khatmullina, G.M., Rakhimov, R.Sh., Meshcheryakova, E.S., Ibragimov, A.G., and Dzhemilev, U.M., Tetrahedron, 2016, vol. 72, p. 3277. doi https://doi.org/10.1016/j.tet.2016.04.055

    Article  CAS  Google Scholar 

  16. Tyumkina, T.V., Makhmudiyarova, N.N., Kiyamutdinova, G.M., Meshcheryakova, E.S., Bikmukhametov, K.Sh., Abdullin, M.F., Khalilov, L.M., Ibragimov, A.G., and Dzhemilev, U.M., Tetrahedron, 2018, vol. 74, p. 1749. doi https://doi.org/10.1016/j.tet.2018.01.045

    Article  CAS  Google Scholar 

  17. Makhmudiyarova, N.N., Khatmullina, G.M., Rakhimov, R.Sh., Ibragimov, A.G., and Dzhemilev, U.M., Arkivoc, 2016, vol. v, p. 427. doi https://doi.org/10.24820/ark.5550190.p009.565

    Article  Google Scholar 

  18. Giumanini, A.G., Verardo, G., Zangrando, E., and Lassiani, L., Z. Prakt. Chem. (Leipzig), 1987, vol. 329, p. 1087. doi https://doi.org/10.1002/prac.19873290619

    Article  CAS  Google Scholar 

  19. Alley, M.C., Scudiero, D.A., Monks, P.A., Hursey, M.L., Czerwinski, M.J., Fine, D.L., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., and Boyd, M.R., Cancer Res., 1988, vol. 48, p. 589.

    CAS  PubMed  Google Scholar 

  20. Grever, M.R., Schepartz, S.A., and Chabner, B.A., Semin Oncol., 1992, vol. 19, p. 622.

    CAS  PubMed  Google Scholar 

  21. Boyd, M.R. and Paull, K.D., Drug. Dev. Res., 1995, vol. 34, p. 91. doi https://doi.org/10.1002/ddr.430340203

    Article  CAS  Google Scholar 

  22. Shoemaker, R.H., Nat. Rev., 2006, vol. 6, p. 813. doi https://doi.org/10.1038/nrc1951

    Article  CAS  Google Scholar 

  23. Weinstein, J.N., Myers, T.G., O. Connor, P.M., Friend, S.H., Fornace, A.J.Jr., Kohn, K.W., Fojo, T., Bates, S.E., Rubinstein, L.V., Anderson, N.L., Buolamwini, J.K., van Osdol, W.W., Monks, A.P., Scudiero, D.A., Sausville, E.A., Zaharevitz, D.W., Bunow, B., Viswanadhan, V.N., Johnson, G.S., Wittes, R.E., and Paull, K.D., Science, 1997, vol. 5298, p. 343. doi https://doi.org/10.1126/science.275.5298.343

    Article  Google Scholar 

  24. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., and Boyd, M.J., Nat. Cancer. Inst., 1991, vol. 83, p. 757. doi https://doi.org/10.1093/jnci/83.11.757

    Article  CAS  Google Scholar 

  25. Technologies A, CrysAlis PRO, 2012, Yarnton, Oxfordshire, England.

    Google Scholar 

  26. Sheldrick, G.M., Acta Cryst., 2008, vol. A64, p. 112. doi https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E. Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.

    Google Scholar 

  28. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913

    Article  CAS  Google Scholar 

  29. Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785. doi https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  30. Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623. doi https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  31. Wolf, S.K. and Ziegler, T., J. Chem. Phys., 1998, vol. 109, p. 895. doi https://doi.org/10.1063/1.476630

    Article  Google Scholar 

  32. Zhurko, G.A. and Zhurko, D.A., ChemCraft, 2009.

    Google Scholar 

Download references

Acknowledgments

Structural studies were performed using unique equipment of the Agidel Center for Collective Use. The APCI mass spectra were registered at the Khimiya Center for Collective Use, Ufa Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Makhmudiyarova.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 5, pp. 714–728.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhmudiyarova, N.N., Rakhimov, R.S., Tyumkina, T.V. et al. Sm-Catalyzed Synthesis and Biological Activity of Acyclic and Cyclic Azadiperoxides. Russ J Org Chem 55, 620–632 (2019). https://doi.org/10.1134/S1070428019050075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019050075

Keywords

Navigation