Russian Journal of Organic Chemistry

, Volume 54, Issue 8, pp 1189–1199 | Cite as

Thermal Rearrangements of 3H- and 4H-Pyrazoles Prepared by Reactions of 9-Diazofluoren with Methyl Tetrolate and Methyl 3-Phenylpropiolate

  • V. A. Vasin
  • Yu. A. Popkova
  • Ye. V. Bezrukova
  • V. V. RazinEmail author
  • N. V. Somov


9-Diazofluoren adds in Et2O at 20°C to methyltetrolate in keeping with Auwers rule and nonregioselectively adds to methyl-3-phenylpropiolate with the formation of spirocyclic 3H-pyrazoles. The methyltetrolate adduct at boiling in toluene converts into methyl 3a-methyl-3aH-dibenzo[e,g]indazole-3-carboxylate, at 190°C in benzene, into methyl 3-methyl-2H-dibenzo[e,g]indazole-2-carboxylate, and at 160°C in methanol, into 3-methyl-2H-dibenzo[e,g]indazole. Auwers adduct of methyl 3-phenylpropiolate at boiling in benzene gives cyclopropene derivative and at boiling in methanol isomerizes into methyl 3a-phenyl-3aHdibenzo[e,g]indazole-3-carboxylate. Anti-Auwers adduct at boiling in benzene isomerizes into methyl 2-phenylpyrazolo[1,5-f]phenanthridine-3-carboxylate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woodward, R.B. and Hoffman, R., The Conservation of Orbital Symmetry, New York: Academic Press, 1970.Google Scholar
  2. 2.
    Boersmja, M.A.M., de Haan, J.W., Kloosterziel, H., and van de Ven, L.J.M., J. Chem. Soc., Chem. Commun., 1970, p. 1168.Google Scholar
  3. 3.
    Youssef, A.K. and Ogliaruso, M.A., J. Org. Chem., 1973, vol. 38, p.487.CrossRefGoogle Scholar
  4. 4.
    Replogle, K.S. and Carpenter, B.K., J. Am. Chem. Soc., 1984, vol. 106, p. 5751.CrossRefGoogle Scholar
  5. 5.
    Sammes, M.P. and Katritzky, A.R., Adv. Heterocycl. Chem., 1983, vol. 34, p.1.CrossRefGoogle Scholar
  6. 6.
    Sammes, M.P. and Katritzky, A.R., Adv. Heterocycl. Chem., 1983, vol. 34, p.53.CrossRefGoogle Scholar
  7. 7.
    Yen, Y., Chen, S.-F., Heng, Z.-C., Huang, J.-C., Kao, L.-C., Lai, C.-C., and Liu, R.S.H., Heterocycles, 2001, vol. 55, p. 1859.CrossRefGoogle Scholar
  8. 8.
    Pérez-Aguilar, M.C. and Valdés, C., Angew. Chem., Int. Ed., 2013, vol. 52, p.1.CrossRefGoogle Scholar
  9. 9.
    Hao, L., Hong, J.-J., Zhu, J., and Zhan, Z.-P., Chem. Eur. J., 2013, vol. 19, p. 5715.CrossRefPubMedGoogle Scholar
  10. 10.
    Gladow, D., Doniz-Kettenmann, S., and Reissig, H.-U., Helv. Chim. Acta, 2014, vol. 97, p. 808. doi 10.1002/hlca.201400032CrossRefGoogle Scholar
  11. 11.
    Pérez-Aguilar, M.C. and Valdés, C., Angew. Chem., Int. Ed., 2015, vol. 54, p. 13729.CrossRefGoogle Scholar
  12. 12.
    Vasin, V.A., Masterova, Yu.Yu., Razin, V.V., and Somov, N.V., Russ. J. Org. Chem., 2014, vol. 50, p. 1323. doi 10.1134/S1070428014090152CrossRefGoogle Scholar
  13. 13.
    Vasin, V.A., Razin, V.V., Markelova, Yu.A., and Masterova, Yu.Yu., Russ. J. Org. Chem., 2015, vol. 51, p. 1418. doi 10.1134/S1070428015100103CrossRefGoogle Scholar
  14. 14.
    Van Alphen, J., Rec. Trav. Chim., 1943, vol. 62, p.491.CrossRefGoogle Scholar
  15. 15.
    Komendantov, M.I., Zavgorodnyaya, A.P., Domnin, I.N., and Bekmukhametov, R.R., Zh. Org. Khim., 1986, vol. 22, p. 1541.Google Scholar
  16. 16.
    Fedorov, A.A., Duisenbaev, Sh.E., Razin, V.V., Kuznetsov, M.A., and Linden, E., Russ. J. Org. Chem., 2007, vol. 43, p. 231. doi 10.1134/S1070428007020145CrossRefGoogle Scholar
  17. 17.
    Mataka, S. and Tashiro, M., J. Org. Chem., 1981, vol. 46, p. 1929.CrossRefGoogle Scholar
  18. 18.
    Silverstein, R.M., Webster, F.X., and Kiemple, D.J., Spectrometric Identification of Organic Compounds, 7th Ed., New York: J.Wiley & Sons, Inc., 2005.Google Scholar
  19. 19.
    Razin, V.V., Zh. Org. Khim., 1975, vol. 11, p. 1457.Google Scholar
  20. 20.
    Vasin, V.A., Razin, V.V., Bezrukova, E.V., and Petrov, P.S., Russ. J. Org. Chem., 2016, vol. 52, p. 862. doi 10.1134/S1070428016060178CrossRefGoogle Scholar
  21. 21.
    Huisgen, R., Reissig, H.-U., and Huber, H., J. Am. Chem. Soc., 1979, vol. 101, p. 3647.CrossRefGoogle Scholar
  22. 22.
    Trost, B.M., Taft, B.R., Masters, J.T., and Lumb, J.-P., J. Am. Chem. Soc., 2011, vol. 133, p. 8502. doi 10.1021/ja203171xCrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kurita, T., Aoki, F., Mizumoto, T., Maejima, T., Esaki, H., Maegawa, T., Monguchi, Y., and Sajiki, H., Chem. Eur. J., 2008, vol. 14, p. 3371.CrossRefPubMedGoogle Scholar
  24. 24.
    Friedrichsen, W., Schwarz, I., Epe, B., and Hesse, K.-F., Z. Naturforsch., 1981, vol. 36B, p.622.CrossRefGoogle Scholar
  25. 25.
    Sheldrick, G.M., Acta Cryst., Sect. A, 2008, vol. 64, p.112.CrossRefGoogle Scholar
  26. 26.
    Farrugia, L.J., J. Appl. Cryst., 1999, vol. 32, p. 837. doi 10.1107/S0021889899006020CrossRefGoogle Scholar
  27. 27.
    CrysAlis PRO, Rigaku Oxford Diffraction, 2015.Google Scholar
  28. 28.
    Burnett, M.N. and Johnson, C.K., ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895, 1996.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Vasin
    • 1
  • Yu. A. Popkova
    • 1
  • Ye. V. Bezrukova
    • 1
  • V. V. Razin
    • 2
    Email author
  • N. V. Somov
    • 3
  1. 1.Ogarev Mordovian State UniversitySaranskRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations