Russian Journal of Organic Chemistry

, Volume 53, Issue 5, pp 769–776 | Cite as

Synthesis of ortho-carboranyl derivatives of (S)-asparagine and (S)-glutamine

  • D. A. Gruzdev
  • G. L. Levit
  • V. A. Olshevskaya
  • V. P. Krasnov


(S)-Asparagine and (S)-glutamine ortho-carboranyl derivatives with free amino and carboxy groups in the α-position were synthesized. By an example of N γ-(1,2-dicarba-closo-dodecarboran-3-yl)-(S)-glutamine it was demonstrated that the developed synthetic approach carboranyl derivatives of amino acids allowed the preparation of optically pure isomers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bregadze, V.I., Chem. Rev., 1992, vol. 92, p. 209.CrossRefGoogle Scholar
  2. 2.
    Grimes, R.N., Carboranes, II Ed. London–Amsterdam–Burlington–San Diego–Oxford: Academic Press, 2011.Google Scholar
  3. 3.
    Januszko, A., Kaszynski, P., Wand, M.D., More, K.M., Pakhomov, S., and O’Neill, M., J. Mater. Chem., 2004, vol. 14, p. 1544.CrossRefGoogle Scholar
  4. 4.
    Ma, L., Hamdi, J., Huang, J., and Hawthorne, M.F., Inorg. Chem., 2005, vol. 44, p. 7249. doi 10.1021/ic050895mCrossRefGoogle Scholar
  5. 5.
    Hohman, J.N., Claridge, S.A., Kim, M., and Weiss, P.S., Mater. Sci. Eng. R., 2010, vol. 70, p. 188.CrossRefGoogle Scholar
  6. 6.
    Prokop, A., Vacek, J., and Michl, J., ACS Nano, 2012, vol. 6, p. 1901.CrossRefGoogle Scholar
  7. 7.
    Valliant, J.F., Guenther, K.J., King, A.S., Morel, P., Schaffer, P., Sogbein, O.O., and Stephenson, K.A., Coord. Chem. Rev., 2002, vol. 232, p. 173.CrossRefGoogle Scholar
  8. 8.
    Issa, F., Kassiou, M., and Rendina, L.M., Chem. Rev., 2011, vol. 111, p. 5701.CrossRefGoogle Scholar
  9. 9.
    Scholz, M., and Hey-Hawkins, E., Chem. Rev., 2011, vol. 111, p. 7035.CrossRefGoogle Scholar
  10. 10.
    Nakamura, H., Kirihata, M., Neutron Capture Therapy: Principles and Applications, Sauerwein, W., Wittig, A., Moss, R., Nakagawa, Y., Eds., Heidelberg Springer-Verlag, 2012.Google Scholar
  11. 11.
    Radel, P.A. and Kahl, S.B., J. Org. Chem., 1996, vol. 61, p. 4582.CrossRefGoogle Scholar
  12. 12.
    Das, B.C., Kabalka, G.W., Srivastava, R.R., Bao, W., Das, S., and Li, G., J. Organometal. Chem., 2000, vol. 614, 615, p. 255.CrossRefGoogle Scholar
  13. 13.
    Levit, G.L., Krasnov, V.P., Gruzdev, D.A., Demin, A.M., Bazhov, I.V., Sadretdinova, L.Sh., Olshevskaya, V.A., Kalinin, V.N., Cheong, C.S., Chupakhin, O.N., and Charushin, V.N., Coll. Czech. Chem. Commun., 2007, vol. 72, p. 1697.CrossRefGoogle Scholar
  14. 14.
    Gruzdev, D.A., Levit, G.L., Bazhov, I.V., Demin, A.M., Sadretdinova, L.Sh., Olshevskaya, V.A., Kalinin, V.N., Krasnov, V.P., and Chupakhin, O.N., Russ. Chem. Bull., 2010, vol. 59, p. 110. doi 10.1007/s11172-010-0052-0CrossRefGoogle Scholar
  15. 15.
    Walker, I., Nicholls, D., Irwin, W.J., and Freeman, S., Int. J. Pharm., 1994, vol. 104, p. 157.CrossRefGoogle Scholar
  16. 16.
    Bonina, F.P., Arenare, L., Palagiano, F., Saija, A., Nava, F., Trombetta, D., and De Caprariis, P., J. Pharm. Sci., 1999, vol. 88, p. 561.CrossRefGoogle Scholar
  17. 17.
    Peura, L., Malmioja, K., Huttunen, K., Leppänen, J., Hämäläinen, M., Forsberg, M.M., Rautio, J., and Laine, K., Pharm. Res., 2013, vol. 30, p. 2523. doi 10.1007/s11095-012-0966-3CrossRefGoogle Scholar
  18. 18.
    Singh, V.K. and Subudhi, B.B., Med. Chem. Res., 2015, vol. 24, p. 624.CrossRefGoogle Scholar
  19. 19.
    Nuraeva, A.S., Vasileva, D.S., Vasilev, S.G., Zelenovskiy, P.S., Gruzdev, D.A., Krasnov, V.P., Olshevskaya, V.A., Kalinin, V.N., and Shur, V.Ya., Ferroelectrics, 2016, vol. 496, p. 1. doi 10.1080/00150193.2016.1155037CrossRefGoogle Scholar
  20. 20.
    Tomasz, J., Acta Chim. Acad. Sci. Hung., 1971, vol. 70, p. 255.Google Scholar
  21. 21.
    Yang, C.C. and Merrifield, R.B., J. Org. Chem., 1976, vol. 41, p. 1032.CrossRefGoogle Scholar
  22. 22.
    Olsen, R.K., Ramasamy, K., and Emery, T., J. Org. Chem., 1984, vol. 49, p. 3527.CrossRefGoogle Scholar
  23. 23.
    Bergmeier, S.C., Cobás, A.A., and Rapoport, H., J. Org. Chem., 1993, vol. 58, p. 2369.CrossRefGoogle Scholar
  24. 24.
    Adlington, R.M., Baldwin, J.E., Catterick, D., and Pritchard, G.J., J. Chem. Soc., Perkin Trans. 1, 1999, p. 855.Google Scholar
  25. 25.
    Li, X., Atkinson, R.N., and King, S.B., Tetrahedron, 2001, vol. 57, p. 6557.CrossRefGoogle Scholar
  26. 26.
    Bhat, R.G., Porhiel, E., Saravanan, V., and Chandrasekaran, S., Tetrahedron Lett., 2003, vol. 44, p. 5251.CrossRefGoogle Scholar
  27. 27.
    More, S.S. and Vince, R., J. Med. Chem., 2009, vol. 52, p. 4650.CrossRefGoogle Scholar
  28. 28.
    Qu, W., Zha, Z., Ploessl, K., Lieberman, B.P., Zhu, L., Wise, D.R., Thompson, C.B., and Kung, H.F., J. Am. Chem. Soc., 2011, vol. 133, p. 1122. doi 10.1021/ja109203dCrossRefGoogle Scholar
  29. 29.
    Avent, A.G., Duggan, H.M.E., and Young, D.W., Org. Biomol. Chem., 2005, vol. 3, p. 2327.CrossRefGoogle Scholar
  30. 30.
    Wang, L., Zha, Z., Qu, W., Qiao, H., Lieberman, B.P., Plössl, K., and Kung, H.F., Nucl. Med. Biol., 2002, vol. 39, p. 933.CrossRefGoogle Scholar
  31. 31.
    Usuki, T., Sugimura, T., Komatsu, A., and Koseki, Y., Org. Lett., 2014, vol. 16, p. 1672.CrossRefGoogle Scholar
  32. 32.
    Dhaon, M.K., Olsen, R.K., and Ramasamy, K., J. Org. Chem., 1982, vol. 47, p. 1962.CrossRefGoogle Scholar
  33. 33.
    Zakharkin, L.I., Kalinin, V.N., and Gedymin, V.V., J. Organometal. Chem., 1967, vol. 16, p. 371. doi 10.1016/S0022-328X(00)89762-4CrossRefGoogle Scholar
  34. 34.
    Toyo’oka, T. and Liu, Y.-M., Chromatographia, 1995, vol. 40, p. 645.CrossRefGoogle Scholar
  35. 35.
    Yoshioka, R., Ohtsuki, O., Senuma, M., and Tosa, T., Chem. Pharm. Bull., 1989, vol. 37, p. 883. doi 10.1248/cpb.37.883CrossRefGoogle Scholar
  36. 36.
    Boissonnas, R.A., Guttmann, St., Jaquenoud, P.A., and Waller, J.-P., Cherbuliez, E., and Stoll, A., Helv. Chim. Acta, 1955, vol. 38, p. 1491. doi 10.1002/hlca.19550380622.CrossRefGoogle Scholar
  37. 37.
    Maunder, P., Finglas, P.M., Mallet, A.I., Mellon, F.A., Razzaque, M.A., Ridge, B., Vahteristo, L., and Witthöft, C., J. Chem. Soc., Perkin Trans. 1, 1999, p. 1311. doi 10.1039/A900944BGoogle Scholar
  38. 38.
    Dörr, A. and Lubell, W.D., Pept. Sci., 2007, vol. 88, p. 290.CrossRefGoogle Scholar
  39. 39.
    Medzihradszky, K., Kotai, A., and Kajtar, M., Ann. Univ. Sci. Budap. Rolando Eötvös Nominatae. Chim., 1967, vol. 9, p. 71.Google Scholar
  40. 40.
    Adamczyk, M., Johnson, D.D., and Reddy, R.E., Tetrahedron: Asymmetry, 1999, vol. 10, p. 775. doi 10.1016/S0957-4166(99)00055-5CrossRefGoogle Scholar
  41. 41.
    Ramalingam, K. and Woodward, R.W., J. Org. Chem., 1988, vol. 53, p. 1900. doi 10.1021/jo00244a012CrossRefGoogle Scholar
  42. 42.
    Hillmann, G., Z. Naturforsch., 1946, vol. 1, p. 682.Google Scholar
  43. 43.
    Slama, J.T., Satsangi, R.K., Simmons, A., Lynch, V., Bolger, R.E., and Suttie, J., J. Med. Chem., 1990, vol. 33, p. 824. doi 10.1021/jm00164a056CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Gruzdev
    • 1
  • G. L. Levit
    • 1
  • V. A. Olshevskaya
    • 2
  • V. P. Krasnov
    • 1
  1. 1.Postovsky Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations