Russian Journal of Organic Chemistry

, Volume 53, Issue 5, pp 746–752 | Cite as

Сyclization of 1-amino-2-hydrazinobenzimidazole treated with carbon disulfide. Synthesis of 9-amino-2,9-dihydro-3Н-[1,2,4]triazolo[4,3-а]benzimidazole-3-thione and its derivatives

  • T. A. Kuzmenko
  • L. N. Divaeva
  • A. S. Morkovnik
  • G. S. Borodkin
  • M. S. Korobov
Article
  • 32 Downloads

Abstract

1-Amino-2-hydrazinobenzimidazole when treated with carbon disulfide underwent a regioselective cyclization involving the hydrazino group to form 9-amino-2,9-dihydro-3Н-[1,2,4]triazolo[4,3-а]benzimidazole-3-thione. Being an N-amine this compound gives Schiff bases with aromatic aldehydes, and as thione in DMF at a temperature not exceeding 60°С it is successfully alkylated, particularly by functionalized alkylating agents, affording the corresponding sulfanylmethyl derivatives. In boiling DMF, as it is demonstrated by an example of benzyl chlorides, NNH2 group also undergoes alkylation that unexpectedly results in 4-benzylidenamino-3-benzylsulfanyltriazolobenzimidazoles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuz’menko, T.A., Kuz’menko, V.V., Divaeva, L.N., Morkovnik, A.S., and Borodkin, G.S., Russ. J. Org. Chem., 2014, vol. 50, p. 729. doi 10.1134/S1070428014050182CrossRefGoogle Scholar
  2. 2.
    Tyurenkova, G.N., Il’enko, V.I., Serebryakova, N.V., Platonov, V.G., Mokrushina, G.A., and Mudretsova, I.I., Pharm. Chem. J., 1988, vol. 22, p. 238.doi 10.1007/BF00758277CrossRefGoogle Scholar
  3. 3.
    Kuz’menko, T.A., Kuz’menko, V.V., Divaeva, L.N., Morkovnik, A.S., and Borodkin, G.S., Russ. Chem. Bull., 2012, vol. 61, p. 1161. doi 10.1007/s11172-012-0158-7CrossRefGoogle Scholar
  4. 4.
    Kuz’menko, V.V. and Pozharskii, A.F., Advances in Heterocyclic Chemistry, Katritzky, A.R., Ed., New York: Elsevier, 1992, p. 154.Google Scholar
  5. 5.
    Mohamed, B.G., Hussein, M.A., Abdel-Alim, A.-A.M., and Hashem, M., Arch. Pharm. Res., 2006, vol. 29, p. 26. doi 10.1007/BF02977464CrossRefGoogle Scholar
  6. 6.
    Reynolds, G.A. and Van Allan, J.A., J. Org. Chem., 1959, vol. 24, p. 1478. doi 10.1021/jo01092a023CrossRefGoogle Scholar
  7. 7.
    Lutz, A.W., J. Org. Chem., 1964, vol. 29, p. 1174. doi 10.1021/jo01028a044CrossRefGoogle Scholar
  8. 8.
    High Resolution Nuclear Magnetic Resonance Spectroscopy, Emsley, J.W., Feeney, J., and Sutcliffe, L.H., Eds., London: Elsevier, 1966, vol. 2.Google Scholar
  9. 9.
    Klötzer, W., Montavon, M., Müssner, R., and Singewald, N., EP Patent no. EP0283857A1, 1988.Google Scholar
  10. 10.
    Kuz’menko, V.V., Kuz’menko, T.A., and Simonov, A.M., Chem. Heterocycl. Compd., 1986, vol. 22, p. 282. doi 10.1007/BF00514995CrossRefGoogle Scholar
  11. 11.
    Kuz’menko, T.A., Kuz’menko, V.V., Pozharskii, A.F., and Klyuev, N.A., Chem. Heterocycl. Compd., 1988, vol. 24, p. 1012. doi 10.1007/BF00474046CrossRefGoogle Scholar
  12. 12.
    Mohamed, B.G., Abdel-Alim, A.-A.M., and Hussein, M.A., Acta Pharm., 2006, vol. 56, p. 31.Google Scholar
  13. 13.
    Mohammed, A.F., Abdel-Moty, S.G., Hussein, M.A., and Abdel-Alim, A.-A.M., Arch. Pharm. Res., 2013, vol. 36, p. 1465. doi 10.1007/s12272-013-0153-zCrossRefGoogle Scholar
  14. 14.
    Nagayama, K., Kumar, A., Wuthrich, K., and Ernst, R.R., J. Magn. Res., 1980, vol. 40, p. 321. doi 10.1016/0022-2364(80)90255-3Google Scholar
  15. 15.
    Aue, W.P., Bartholdi, E., and Ernst, R.R., J. Chem. Phys., 1976, vol. 64, p. 2229. doi 10.1063/1.432450CrossRefGoogle Scholar
  16. 16.
    Davis, A.L., Keeler, J., Laue, E.D., and Moskau, D., J. Magn. Res., 1992, vol. 98, p. 207. doi 10.1016/0022-2364(92)90126-RGoogle Scholar
  17. 17.
    Hurd, R.E. and John, B.K., J. Magn. Res., 1991, vol. 91, p. 648. doi 10.1016/0022-2364(91)90395-AGoogle Scholar
  18. 18.
    Willker, W., Leibfritz, D., Kerssebaum, R., and Bermel, W., Magn. Res. Chem., 1993, vol. 31, p. 287. doi 10.1002/mrc.1260310315CrossRefGoogle Scholar
  19. 19.
    Gel’man, N.E., Terent’eva, E.A., Shanina, T.M., and Kiparenko, L.M., Metody kolichestvennogo organicheskogo elementnogo analiza (Methods of Quantitive Organic Element Analysis), Moscow Khimiya, 1987.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • T. A. Kuzmenko
    • 1
  • L. N. Divaeva
    • 1
  • A. S. Morkovnik
    • 1
  • G. S. Borodkin
    • 1
  • M. S. Korobov
    • 1
  1. 1.Research Institute of Physical and Organic Chemistry at the Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations