Russian Journal of Organic Chemistry

, Volume 53, Issue 5, pp 656–662 | Cite as

Composition and reactivity of aminolysis products of phenyl glycidyl ether with benzylamine

  • V. A. Pal’chikov
  • S. Yu. Mykolenko
  • A. N. Pugach
  • F. I. Zubkov


Composition of aminolysis products of phenyl glycidyl ether with benzylamine in various conditions was studied. The ratio of 1-(benzylamino)-3-phenoxypropan-2-ol and 1,1'-(benzylazanediyl)bis(3-phenoxypropan-2-ol) does not considerably depend on the nature of the solvent and is basically determined by ratio of initial reagents. 2,6-Bis(phenoxymethyl)morpholine was obtained by dehydration of aminodiol in conditions of Mitsunobu reaction with subsequent reductive debenzylation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Statsenko, M.E. and Derevianchenko, M.V., Kardiologiia, 2012, vol. 52, p. 57.Google Scholar
  2. 2.
    Tandon, V.K., Kumar, M., Awasthi, A.K., Saxena, H.O., and Goswamy, G.K., Bioorg. Med. Chem. Lett., 2004, vol. 14, p. 3177. doi 10.1016/j.bmcl.2004.04.009CrossRefGoogle Scholar
  3. 3.
    Muthukrishnan, M., Garud, D.R., Joshi, R.R., and Joshi, R.A., Tetrahedron, 2007, vol. 63, p. 1872. doi 10.1016/j.tet.2006.12.016CrossRefGoogle Scholar
  4. 4.
    Bose, D., Synthesis, 2005, vol. 14, p. 2345. doi 10.1055/s-2005-870021CrossRefGoogle Scholar
  5. 5.
    Pandey, D., Katti, S.B., Haq, W., and Tripathi, C.K.M., Bioorg. Med. Chem., 2004, vol. 12, p. 3807. doi 10.1016/j.bmc.2004.05.011CrossRefGoogle Scholar
  6. 6.
    Schenone, S., Bruno, O., Ranise, A., Bondavalli, F., Filippelli, W., Falcone, G., and Rinaldi, B., Farmaco, 2000, vol. 55, p. 495.CrossRefGoogle Scholar
  7. 7.
    Satyanarayana, M., Tiwari, P., Tripathi, B.K., Srivastava, A.K., and Pratap, R., Bioorg. Med. Chem., 2004, vol. 12, p. 883. doi 10.1016/j.bmc.2003.12.026CrossRefGoogle Scholar
  8. 8.
    Gavai, A.V., Vaz, R.J., Mikkilineni, A.B., Roberge, J.Y., Liu, Y., Lawrence, R.M., Corte J.R., Yang, W., Bednarz, M., Dickson, J.K., Ma, Zh., Seethala, R., and Feyen, J.H.M., Bioorg. Med. Chem. Lett., 2005, vol. 15, p. 5478. doi 10.1016/j.bmcl.2005.08.095CrossRefGoogle Scholar
  9. 9.
    Krushinski, J.H., Schaus, J.M., Thompson, D.C., Calligaro, D.O., Nelson, D.L., Luecke, S.H., Wainscott, D.B., and Wong, D.T., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 5600. doi 10.1016/j.bmcl.2007.07.086CrossRefGoogle Scholar
  10. 10.
    Kasyan, L.I., Prid’ma, S.A., Palchikov, V.A., Karat, L.D., Turov, A.V., and Isayev, O., J. Phys. Org. Chem., 2011, vol. 24, p. 705. doi 10.1002/poc.1815CrossRefGoogle Scholar
  11. 11.
    Kas’yan, L.I., Turov, A.V., Karat, L.D., Prid’ma, S.A., Pal’chikov, V.A., Svyatenko, L.K., and Okovityi, S.I., Russ. J. Org. Chem., 2011, vol. 47, p. 74. doi 10.1134/S1070428011010088CrossRefGoogle Scholar
  12. 12.
    Pal’chikov, V.A., Svyatenko, L.K., Plakhotnii, I.N., and Kas’yan, L.I., Russ. J. Org. Chem., 2013, vol. 49, p. 686. doi 10.1134/S1070428013050084CrossRefGoogle Scholar
  13. 13.
    Kas’yan, L.I., Golodaeva, E.A., Kas’yan, A.O., Isaev, A.K., and Bondarenko, Ya.S., Visn. Dnipropetr. Univer. Khimiya, 2007, p. 48.Google Scholar
  14. 14.
    Kas’yan, L.I., Golodaeva, E.A., Nadtoka, M.I., and Kas’yan, A.O., Visn. Dnepropetrovs. Univer. Khimiya, 2002, p. 41.Google Scholar
  15. 15.
    Kas’yan, A.O., Golodaeva, E.A., Tsygankov, A.V., and Kas’yan, L.I., Russ. J. Org. Chem., 2002, vol. 38, p. 1606. doi 10.1023/A:1022553832553CrossRefGoogle Scholar
  16. 16.
    Kas’yan, L.I., Batog, A.E., Kas’yan, A.O., Gaponova, P.G., Savel’eva, O.A., and Golodaeva, E.A., Vopr. Khim. Khim. Tekhnol., 2000, p. 34.Google Scholar
  17. 17.
    Kas’yan, L.I., Kostenko, L.I., Golodaeva, E.A., Radchenko, N.D., Bondarenko, Ya.S., and Prid’ma, S.A., Vopr. Khim. Khim. Tekhnol., 2008, p. 16.Google Scholar
  18. 18.
    Kas’yan, L.I., Prid’ma, S.A., Turov, A.V., Pal’chikov, V.A., Kas’yan, A.O., and Karat, L.D., Russ. J. Org. Chem., 2009, vol. 45, p. 505. doi 10.1134/S107042800904006XCrossRefGoogle Scholar
  19. 19.
    Kas’yan, L.I., Krishchik, O.V., Tarabara, I.N., Kas’yan, A.O., and Pal’chikov, V.A., Russ. J. Org. Chem., 2006, vol. 42, p. 501. doi 10.1134/S1070428006040051CrossRefGoogle Scholar
  20. 20.
    Maheswara, M., Rao, K.S.V.K., and Do, J.Y., Tetrahedron Lett., 2008, vol. 49, p. 1795. doi 10.1016/j.tetlet.2008.01.044CrossRefGoogle Scholar
  21. 21.
    Cepanec, I., Litvic, M., Mikuldaš, H., Bartolincic, A., and Vinkovic, V., Tetrahedron, 2003, vol. 59, p. 2435. doi 10.1016/S0040-4020(03)00292-8CrossRefGoogle Scholar
  22. 22.
    Negrón-Silva, G., Hernández-Reyes, C.X., Angeles-Beltrán, D., Lomas-Romero, L., González-Zamora, E., and Méndez-Vivar, J., Molecules, 2007, vol. 12, p. 2515. doi 10.3390/12112515CrossRefGoogle Scholar
  23. 23.
    Jafari, A.A. and Moradgholi, A.A., Synth. Commun., 2011, vol. 41, p. 594. doi 10.1080/00397911003629473CrossRefGoogle Scholar
  24. 24.
    Mirzaaghayan, M., Alvandi, F., Tavana, M.M., and Boukherroub, R., Turk. J. Chem., 2017, vol. 41, p. 70. doi 10.3906/kim-1604-45CrossRefGoogle Scholar
  25. 25.
    Khaksar, S., Heydari, A., Tajbakhsh, M., and Bijanzadeh, H.R., J. Fluor. Chem., 2010, vol. 131, p. 106. doi 10.1016/j.jfluchem.2009.10.003CrossRefGoogle Scholar
  26. 26.
    Negrón-Silva, G., Hernández-Reyes, C.X., Angeles-Beltrán, D., Lomas-Romero, L., and González-Zamora, E., Molecules, 2008, vol. 13, p. 977. doi 10.3390/molecules13040977CrossRefGoogle Scholar
  27. 27.
    Sivaprakasam, M., Couty, F., Evano, G., Srinivas, S., Sridhar, R, and Rao, K.R., Synlett., 2006, p. 781. doi 10.1055/s-2006-933125Google Scholar
  28. 28.
    Bisi, A., Rampa, A., Budriesi, R., Gobbi, S., Belluti, F., Ioan, P., Valoti, E., Chiarini, A., and Valenti, P., Bioorg. Med. Chem., 2003, vol. 11, p. 1353. doi 10.1016/S0968-0896(02)00621-1CrossRefGoogle Scholar
  29. 29.
    Lad, N., Sharma, R., Marquez, V.E., and Mascarenhas, M., Tetrahedron Lett., 2013, vol. 54, p. 6307. doi 10.1016/j.tetlet.2013.09.021CrossRefGoogle Scholar
  30. 30.
    Ruider, S.A., Mueller, S., and Carreira, E.M., Angew. Chem., Int. Ed., 2013, vol. 52, p. 11908. doi 10.1002/anie.201306563CrossRefGoogle Scholar
  31. 31.
    Erhardt, P.W., Woo, C.M., Gorczynski, R.J., and Anderson, W.G., J. Med. Chem., 1982, vol. 25, p. 1402. doi 10.1021/jm00354a002CrossRefGoogle Scholar
  32. 32.
    Pal’chikov, V.A., Russ. J. Org. Chem., 2013, vol. 49, p. 787. doi 10.1134/S1070428013060018CrossRefGoogle Scholar
  33. 33.
    Forsyth, S.A., Gunaratne, H.Q.N., Hardacre, C., McKeown, A., and Rooney, D.W., Org. Proc. Res. Dev., 2006, vol. 10, p. 94.CrossRefGoogle Scholar
  34. 34.
    Albanese, D., Landini, D., Penso, M., Tagliabue, A., and Carlini, E., Org. Proc. Res. Dev., 2010, vol. 14, p. 705.CrossRefGoogle Scholar
  35. 35.
    Lupi, V., Albanese, D., Landini, D., Scaletti, D., and Penso, M., Tetrahedron, 2004, vol. 60, p. 11709. doi 10.1016/j.tet.2004.10.008CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Pal’chikov
    • 1
  • S. Yu. Mykolenko
    • 2
  • A. N. Pugach
    • 2
  • F. I. Zubkov
    • 3
  1. 1.Oles’ Honchar Dnepropetrovsk National UniversityDnepropetrovskUkraine
  2. 2.Dnepropetrovsk State Agrarian and Economic UniversityDnepropetrovskUkraine
  3. 3.RUDN UniversityMoscowRussia

Personalised recommendations