Russian Journal of Organic Chemistry

, Volume 53, Issue 5, pp 643–651 | Cite as

Quantum-chemical calculations of NMR chemical shifts of organic molecules: XV. Relativistic calculations of 29Si NMR chemical shifts of silanes

Article

Abstract

Calculations of 29Si NMR chemical shifts of 68 silanes possessing various substituents, in particular, with heavy halogens attached to silicon atom, were carried out applying an efficient calculation scheme of locally dense basis set in the framework of the electron density functional theory utilizing the Keal–Tozer functional combined with relativistic Dyall basis sets on a four-component relativistic level. The main factors of calculation accuracy of silicon chemical shifts were analyzed including the relativistic effects, environmental impact, and vibrational corrections. The mean absolute calculation error for the studied compounds series accounting for all mentioned factors was 14.0 ppm for the nonrelativistic calculation and 6.7 ppm for the four-component relativistic calculation at the range of silicon chemical shifts variation of ~250 ppm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fedorov, S.V., Rusakov, Yu.Yu., and Krivdin, L.B., Russ. J. Org. Chem., 2014, vol. 50, p. 1082. doi 10.1134/S1070428014080028CrossRefGoogle Scholar
  2. 2.
    Sauer, S.P.A., Electromagnetism. A Computational Chemistry Approach, Oxford University Press, 2012.Google Scholar
  3. 3.
    Helgaker, T., Coriani, S., Jørgensen, P., Kristensen, K., Olsen, J., and Ruud, K., Chem. Rev., 2012, vol. 112, p. 543. doi 10.1021/cr2002239CrossRefGoogle Scholar
  4. 4.
    Rusakov, Yu.Yu. and Krivdin, L.B., Russ. Chem. Rev., 2013, vol. 82, p. 99. doi 10.1070/RC2013v082n02ABEH004350CrossRefGoogle Scholar
  5. 5.
    Krivdin, L.B. and Contreras, R.H., Annu. Rpts. NMR Spectrosc., 2007, vol. 61, p. 133.CrossRefGoogle Scholar
  6. 6.
    Helgaker, T., Jaszunski, M., and Ruud, K., Chem. Rev., 1999, vol. 99, p. 293. doi 10.1021/cr960017tCrossRefGoogle Scholar
  7. 7.
    Xiao, Y., Liu, W., and Autschbach, J., Handbook of Relativistic Quantum Chemistry, Liu, W., Ed., Berlin Springer, 2017.Google Scholar
  8. 8.
    Rusakova, I.L., Rusakov, Yu.Yu., and Krivdin, L.B., Russ. Chem. Rev., 2016, vol. 85, p. 356. doi 10.1070/RCR4561CrossRefGoogle Scholar
  9. 9.
    Autschbach, J., High Resolution NMR Spectroscopy: Understanding Molecules and their Electronic Structures, Contreras, R.H., Ed., The Netherlands: Elsevier, 2013, vol. 3.Google Scholar
  10. 10.
    Autschbach, J., Annu. Rpts. NMR Spectr., 2009, vol. 67, p. 1.CrossRefGoogle Scholar
  11. 11.
    Fedorov, S.V., Rusakov, Yu.Yu., and Krivdin, L.B., J. Phys. Chem. A, 2015, vol. 119, p. 5778. doi 10.1021/acs.jpca.5b02337CrossRefGoogle Scholar
  12. 12.
    Fedorov, S.V., Rusakov, Yu.Yu., and Krivdin, L.B., Russ. Chem. Bull., 2015, vol. 64, p. 551. doi 10.1007/s11172-015-0899-1CrossRefGoogle Scholar
  13. 13.
    Chernyshev, K.A., Gostevskii, B.A., and Krivdin, L.B., Russ. J. Org. Chem., 2013, vol. 49, p. 832. doi 10.1134/S1070428013060055CrossRefGoogle Scholar
  14. 14.
    Chernyshev, K.A., Gostevskii, B.A., Albanov, A.I., and Krivdin, L.B., Russ. J. Org. Chem., 2013, vol. 49, p. 34. doi 10.1134/S1070428013010077CrossRefGoogle Scholar
  15. 15.
    Chernyshev, K.A. and Krivdin, L.B., Russ. J. Org. Chem., 2012, vol. 48, p. 1518. doi 10.1134/S1070428012120044CrossRefGoogle Scholar
  16. 16.
    Tomasi, J., Mennucci, B., and Cancès, E., J. Mol. Struct. THEOCHEM, 1999, vol. 464, p. 211.CrossRefGoogle Scholar
  17. 17.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, p. 2999. doi 10.1021/cr9904009CrossRefGoogle Scholar
  18. 18.
    Ruden, T.A. and Ruud, K., Calculation of NMR and EPR Parameters. Theory and Applications, Kaupp, M., Bühl, M., Malkin, V.G., Eds., Weinheim Wiley-VCH, 2004.Google Scholar
  19. 19.
    Keal, T.W. and Tozer, D.J., J. Chem. Phys., 2003, vol. 119, p. 3015.CrossRefGoogle Scholar
  20. 20.
    Dyall, K.G., Theor. Chem. Acc., 1998, vol. 99, p. 366. doi 10.1007/s002140050349Google Scholar
  21. 21.
    Dyall, K.G., Theor. Chem. Acc., 2002, vol. 108, p. 335. doi 10.1007/s00214-002-0388-0CrossRefGoogle Scholar
  22. 22.
    Dyall, K.G., Theor. Chem. Acc., 2006, vol. 115, p. 441. doi 10.1007/s00214-006-0126-0CrossRefGoogle Scholar
  23. 23.
    Chesnut, D.B. and Byrd, E.F.C., Chem. Phys., 1996, vol. 213, p. 153. doi 10.1016/S0301-0104(96)00281-9CrossRefGoogle Scholar
  24. 24.
    Provasi, P.F., Aucar, G.A., and Sauer, S.P.A., J. Chem. Phys., 2000, vol. 112, p. 6201. doi 10.1063/1.481219CrossRefGoogle Scholar
  25. 25.
    Sanchez, M., Provasi, P.F., Aucar, G.A., and Sauer, S.P.A., Adv. Quantum Chem., 2005, vol. 48, p. 161.CrossRefGoogle Scholar
  26. 26.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347.CrossRefGoogle Scholar
  27. 27.
    DALTON, a Molecular Electronic Structure Program, Release Dalton2016, (2016) written by Aidas, K., Angeli, C., Bak, K.L., Bakken, V., Bast, R., Boman, L., Christiansen, O., Cimiraglia, R., Coriani, S., Dahle, P., Dalskov, E.K., Ekström, U., Enevoldsen, T., Eriksen, J.J., Ettenhuber, P., Fernández, B., Ferrighi, L., Fliegl, H., Frediani, L., Hald, K., Halkier, A., Hättig, C., Heiberg, H., Helgaker, T., Hennum, A.C., Hettema, H., Hjertenæs, E., Høst, S., Høyvik, I.-M., Iozzi, M.F., Jansik, B., Jensen, H.J.Aa., Jonsson, D., Jørgensen, P., Kauczor, J., Kirpekar, S., Kjærgaard, T., Klopper, W., Knecht, S., Kobayashi, R., Koch, H., Kongsted, J., Krapp, A., Kristensen, K., Ligabue, A., Lutnæs, O.B., Melo, J.I., Mikkelsen, K.V., Myhre, R.H., Neiss, C., Nielsen, C.B., Norman, P., Olsen, J., Olsen, J.M.H., Osted, A., Packer, M.J., Pawlowski, F., Pedersen, T.B., Provasi, P.F., Reine, S., Rinkevicius, Z., Ruden, T.A., Ruud, K., Rybkin, V., Salek, P., Samson, C.C.M., Sánchez de Merás, A., Saue, T., Sauer, S.P.A., Schimmelpfennig, B., Sneskov, K., Steindal, A.H., Sylvester-Hvid, K.O., Taylor, P.R., Teale, A.M., Tellgren, E.I., Tew, D.P., Thorvaldsen, A.J., Thøgersen, L., Vahtras, O., Watson, M.A., Wilson, D.J.D., Ziolkowski, M., and Ågren, H., WIREs Comput. Mol. Sci., 2014, vol. 4, p. 269. http://daltonprogram.org.Google Scholar
  28. 28.
    DIRAC, a Relativistic ab initio Electronic Structure Program, Release DIRAC16, (2016) written by Jensen, H.J.Aa., Bast, R., Saue, T., Visscher, L. with contributions from Bakken, V., Dyall, K.G., Dubillard, S., Ekstroem, U., Eliav, E., Enevoldsen, T., Fasshauer, E., Fleig, T., Fossgaard, O., Gomes, A.S.P., Helgaker, T., Henriksson, J., Ilias, M., Jacob, Ch.R., Knecht, S., Komorovsky, S., Kullie, O., Laerdahl, J.K., Larsen, C.V., Lee, Y.S., Nataraj, H.S., Nayak, M.K., Norman, P., Olejniczak, G., Olsen, J., Park, Y.C., Pedersen, J.K., Pernpointner, M., Di Remigio, R., Ruud, K., Salek, P., Schimmelpfennig, B., Sikkema, J., Thorvaldsen, A.J., Thyssen, J., van Stralen, J., Villaume, S., Visser, O., Winther, T., and Yamamoto, S. http://www.diracprogram.org.Google Scholar
  29. 29.
    Harris, R.K., Becker, E.D., Cabral De Menezes, S.M., Granger, P., Hoffman, R.E., and Zilm, K.W., Pure Appl. Chem., 2008, vol. 80, p. 59.CrossRefGoogle Scholar
  30. 30.
    Krisnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650. doi 10.1063/1.438955CrossRefGoogle Scholar
  31. 31.
    CFOUR, a quantum chemical program package written by Stanton J.F., Auer, A.A., Bartlett, R.J., Benedikt, U., Berger, C., Bernholdt, D.E., Bomble, Y.J., Cheng, L., Christiansen, O., Heckert, M., Heun, O., Huber, C., Jagau, T.-C., Jonsson, D., Jusélius, J., Klein, K., Lauderdale, W.J., Lipparini, F., Matthews, D.A., Metzroth, T., Mück, L.A., O'Neill, D.P., Price, D.R., Prochnow, E., Puzzarini, C., Ruud, K., Schiffmann, F., Schwalbach, W., Simmons, C., Stopkowicz, S., Tajti, A., Vázquez, J., Wang, F., and Watts, J.D., and the integral packages MOLECULE (Almlöf, J., Taylor, P.R.), PROPS (Taylor, P.R.), ABACUS (Helgaker, T., Jensen, H.J.,Aa., Jørgensen, P., Olsen, J.), ECP routines by (Mitin, A.V., van Wüllen, C.). http://www.cfour.de.Google Scholar
  32. 32.
    Uhlig, F. and Marsmann, H.C., Gelest Catalog: Silicon Compounds, Silanes and Silicones, Arkles, B. and Larson, G., Eds., Morrisville Gelest Inc., 2008.Google Scholar
  33. 33.
    Löwer, R., Vongehr, M., and Marsmann, H.C., J. Prakt. Chem., 1975, vol. 99, p. 33.Google Scholar
  34. 34.
    Lickiss, P.D., The Chemistry of Organosilicon Compounds, Rappoport, Z., and Apeloig, Y., Eds., Chichester: J. Wiley&Sons, 1998, vol. 2, p. 557.Google Scholar
  35. 35.
    Maegi, M., Lukevics, E., Lippmaa, E., and Ercak, N.P., Org. Magn. Res., 1977, vol. 9, p. 297.CrossRefGoogle Scholar
  36. 36.
    Dallaire, C., Brook, M.A., Bain, A.D., Frampton, C.S., and Britten, J.F., Can. J. Chem., 1993, vol. 71, p. 1676.CrossRefGoogle Scholar
  37. 37.
    Blinka, T.A., Helmer, B.J., and West, R., Adv. Organometal. Chem., 1984, vol. 23, p. 193.CrossRefGoogle Scholar
  38. 38.
    Kerschl, S., Sebald, A., and Wrackmeyer, B., Magn. Res. Chem., 1985, vol. 23, p. 514.CrossRefGoogle Scholar
  39. 39.
    Karsch, H.H., Schreiber, K.A., and Herker, M., Chem. Ber., 1997, vol. 130, p. 1777.CrossRefGoogle Scholar
  40. 40.
    Filleux-Blanchard, M.L. and Nguyen, D.A., Org. Magn. Res., 1979, vol. 12, p. 12.CrossRefGoogle Scholar
  41. 41.
    Heinz, B., Marsmann, H.C., and Niemann, U., Z. Naturforsch. B., 1977, vol. 32, p. 163.CrossRefGoogle Scholar
  42. 42.
    Bassindale, A.R. and Posnan, T.B., J. Organometal. Chem., 1979, vol. 175, p. 273.CrossRefGoogle Scholar
  43. 43.
    Martens, R. and du Mont, W.W., Chem. Ber., 1993, vol. 126, p. 1115.CrossRefGoogle Scholar
  44. 44.
    Kvicalova, M., Cermak, J., Blechta, V., and Schraml, J., Coll. Czech. Chem. Commun., 1997, vol. 62, p. 816.CrossRefGoogle Scholar
  45. 45.
    Coleman, W.M. and Boyd, A.R., Anal. Chem., 1982, vol. 54, p. 133.CrossRefGoogle Scholar
  46. 46.
    McFarlane, W. and Seaby, J.M., J. Chem. Soc. Perkin Trans. 2, 1972, vol. 11, p. 1561. doi 10.1039/P29720001561CrossRefGoogle Scholar
  47. 47.
    Mitzel, N.W. and Schmidbaur, H., Z. Anorg. Allg. Chem., 1994, vol. 620, p. 1087.CrossRefGoogle Scholar
  48. 48.
    Van den Berghe, E.V. and Van der Kelen, G.P., J. Organometal. Chem., 1976, vol. 122, p. 329.CrossRefGoogle Scholar
  49. 49.
    Damrau, U., Ph.D. Thesis, Paderborn, 1989.Google Scholar
  50. 50.
    Horn, H.-G., J. Prakt. Chem., 1992, vol. 334, p. 201.CrossRefGoogle Scholar
  51. 51.
    Marsmann, H.C. and Horn, H.G., Z. Naturforsch. B, 1972, vol. 27, p. 1448.Google Scholar
  52. 52.
    Vongehr, M. and Marsmann, H.C., Z. Naturforsch. B, 1976, vol. 31, p. 1423.CrossRefGoogle Scholar
  53. 53.
    Harris, R.K. and Kimber, B.J., J. Magn. Res., 1975, vol. 17, p. 174.Google Scholar
  54. 54.
    Albanov, A.I., Gubanova, L.I., Larin, M.F., Pestunovich, V.A., and Voronkov, M.G., J. Organometal. Chem., 1983, vol. 244, p. 5.CrossRefGoogle Scholar
  55. 55.
    Johnson, S.E., Day, R.O., and Holmes, R.R., Inorg. Chem., 1989, vol. 28, p. 3182.CrossRefGoogle Scholar
  56. 56.
    Herzog, U., J. Prakt. Chem., 2000, vol. 342, p. 379.CrossRefGoogle Scholar
  57. 57.
    Johannesen, R.B., Brinckman, F.E., and Coyle, T.D., J. Phys. Chem., 1968, vol. 72, p. 660. doi 10.1021/j100848a047CrossRefGoogle Scholar
  58. 58.
    Kunai, A., Sakurai, T., Toyoda, E., and Ishikawa, M., Organometallics, 1996, vol. 15, p. 2478. doi 10.1021/om950787fCrossRefGoogle Scholar
  59. 59.
    Pickies, J. and Wojonwski, W., Z. Anorg. Allg. Chem., 1984, vol. 511, p. 219.CrossRefGoogle Scholar
  60. 60.
    Marsmann, H.C., Meyer, E., Vongehr, M., and Weber, E.F., Makromol. Chem., 1983, vol. 184, p. 1817.CrossRefGoogle Scholar
  61. 61.
    Pestunovich, V.A., Larin, M.F., Sorokin, M.S., Albanov, A.I., and Voronkov, M.G., J. Organometal. Chem., 1985, vol. 280, p. C17. doi 10.1016/0022-328X(85)87077-7CrossRefGoogle Scholar
  62. 62.
    Jurkschat, K., Mugge, C., Schmidt, J., and Tzschach, A., J. Organometal. Chem., 1985, vol. 287, p. c1. doi 10.1016/0022-328X(85)80077-2Google Scholar
  63. 63.
    Kidd, R.G., Ann. Rep. NMR Spectr., 1980, vol. 10A, p. 2.Google Scholar
  64. 64.
    Kaupp, M., Malkina, O.L., and Malkin, V.G., Chem. Phys. Lett., 1997, vol. 265, p. 55.CrossRefGoogle Scholar
  65. 65.
    Fukawa, S., Hada, M., Fukuda, R., Tanaka, S., and Nakatsuji, H., J. Comp. Chem., 2001, vol. 22, p. 529.CrossRefGoogle Scholar
  66. 66.
    Pyykkö, P., Görling, A., and Rösch, N., Mol. Phys., 1987, vol. 61, p. 195.CrossRefGoogle Scholar
  67. 67.
    Kantola, A.M., Lantto, P., Vaara, J., and Jokisaari, J., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 2679.CrossRefGoogle Scholar
  68. 68.
    Melo, J.I., Maldonado, A.F., and Aucar, G.A., J. Chem. Phys., 2012, vol. 137, p. 214319. doi 10.1063/1.4768470CrossRefGoogle Scholar
  69. 69.
    Samultsev, D.O., Rusakov, Yu.Yu., and Krivdin, L.B., Magn. Res. Chem., 2016, vol. 54, p. 787.CrossRefGoogle Scholar
  70. 70.
    Auer, A.A., Gauss, J., and Stanton, J.F., J. Chem. Phys., 2003, vol. 118, p. 10407. doi 10.1063/1.1574314CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Fedorov
    • 1
  • Yu. Yu. Rusakov
    • 1
  • L. B. Krivdin
    • 1
  1. 1.Favorskii Irkutsk Institute of Chemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations