Russian Journal of Organic Chemistry

, Volume 52, Issue 11, pp 1625–1631 | Cite as

Synthesis of phosphine-containing dipyrromethene cobalt complexes, promising ligands for homogeneous catalysis in nanomembrane reactors

  • E. A. Leushina
  • D. N. Gorbunov
  • D. A. Cheshkov
  • T. S. Kuchinskaya
  • A. V. Anisimov
  • A. L. Maksimov
  • M. V. Terenina
  • A. V. Khoroshutin
  • E. A. Karakhanov
Article
  • 46 Downloads

Abstract

Complexes of 5-(4-diphenylphosphinophenyl)dipyrromethene with trivalent cobalt (Ph2PC6H4DP)3Co (DP for dipyrromethene) were obtained for the first time, and their reaction with dicarbonylrhodium(I) acetylacetonate was investigated. The formed complex [Ph2P(Rh)C6H4DP]3Co was characterized by 1H, 13С, and 31P NMR spectroscopy. The dimensions of the ligand were estimated (by geometry optimization with PM3 method) and of the formed rhodium complex (by 2D diffusion NMR spectroscopy DOSY). The size of the complex makes it possible to detain it on membranes with the pore size of 2 nm providing an opportunity to use it in catalytic processes with subsequent separation of the catalyst and the reaction products in the nanofiltration mode. Test of 1-octene hydroformylation with the use of this catalytic system showed results similar to those with the system Rh–PPh3 both with respect to conversion in aldehydes and to the ratio of n/iso-products. Thus the fundamental possibility was demonstrated of applying the synthesized complexes in catalysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11178_2016_1549_MOESM1_ESM.pdf (1011 kb)
Synthesis of Phosphine-Containing Dipyrromethene Cobalt Complexes, Promising Ligands for Homogeneous Catalysis in Nanomembrane Reactors

References

  1. 1.
    Gorbunov, D.N., Volkov, A.V., Kardasheva, Yu.S., Maksimov, A.L., and Karakhanov, E.A., Neftekhimiya, 2015, vol. 55, p. 443.Google Scholar
  2. 2.
    Yang, Y.C. and Bergbreiter, D.E., Pure Appl. Chem., 2013, vol. 85, p. 493.CrossRefGoogle Scholar
  3. 3.
    Bortenschlager, M., Schollhorn, N., Wittmann, A., and Weberskirch, R., Chem. Eur. J., 2007, vol. 13, p. 520.CrossRefGoogle Scholar
  4. 4.
    Jiang, M., Ding, Y., Yan, L., Song, X., and Lin, R., Chin. J. Catal., 2014, vol. 35, p. 1456.CrossRefGoogle Scholar
  5. 5.
    Jiang, M., Yan, L., Sun, X., Lin, R., Song, X., Jiang, Z., and Ding, Y., Reaction Kinetics Mechanisms Catal., 2015, vol. 116, p. 223.CrossRefGoogle Scholar
  6. 6.
    Ricken, S., Osinski, P.W., Eilbracht, P., and Haag, R., J. Mol. Catal. A: Chem., 2006, vol. 257, p. 78.CrossRefGoogle Scholar
  7. 7.
    Garcia, M.A.S., Oliveira, K.C.B., Costa, J.C.S., Corio, P., Gusevskaya, E.V., dos Santos, E.N., and Rossi, L.M., ChemCatChem., 2015, vol. 7, p. 1566.CrossRefGoogle Scholar
  8. 8.
    Wood, T.E. and Thompson, A., Chem. Rev., 2007, vol. 107, p. 1831.CrossRefGoogle Scholar
  9. 9.
    Littler, B.J., Miller, M.A., Hung, C.-H., Wagner, R.W., O'Shea, D.F., Boyle, P.D., and Lindsey, J.S., J. Org. Chem., 1999, vol. 64, p. 1391.CrossRefGoogle Scholar
  10. 10.
    Hon, Y.-S., Lee, C.-F., Chen, R.-J., and Szu, P.-H., Tetrahedron, 2001, vol. 57, p. 5991.CrossRefGoogle Scholar
  11. 11.
    Glemser, O. and Schwarzmann, E., Rukovodstvo po neorganicheskomu sintezu (Guide for Inorganic Synthesis), Brauer, G., Ed., Moscow: Mir, 1985, vol. 5.Google Scholar
  12. 12.
    Halper, S.R., Stork, J.R., and Cohen, S.M., Dalton Trans., 2007, p. 1067.Google Scholar
  13. 13.
    Fergusson, J.E. and Ramsay, C.A., J. Chem. Soc., 1965, p. 5222.Google Scholar
  14. 14.
    Murphy, D.L., Malachowski, M.R., Campana, C.F., and Cohen, S.M., Chem. Commun., 2005, p. 5506.Google Scholar
  15. 15.
    Halper, S.R. and Cohen, S.M., Inorg. Chem., 2005, vol. 44, p. 486.CrossRefGoogle Scholar
  16. 16.
    Friesen, C.M., Montgomery, C.D., Temple, S.A.J.U., J. Fluorine Chem., 2012, vol. 144, p. 24.CrossRefGoogle Scholar
  17. 17.
    Solomon, S.A., Allen, L.K., Dane, S.B.J., and Wright, D.S., Eur. J. Inorg. Chem., 2014, vol. 2014, p. 1615.CrossRefGoogle Scholar
  18. 18.
    Russell, M.G. and Warren, S., J. Chem. Soc., Perkin Trans. 1, 2000, p. 505.Google Scholar
  19. 19.
    Li, G., Ray, L., Glass, E.N., Kovnir, K., Khoroshutin, A., Gorelsky, S.I., and Shatruk, M., Inorg. Chem., 2012, vol. 51, p. 1614.CrossRefGoogle Scholar
  20. 20.
    Dohmen, M.P.J., Pereira, A.M., Timmer, J.M.K., Benes, N.E., and Keurentjes, J.T.F., J. Chem. Eng. Data, 2008, vol. 53, p. 63.CrossRefGoogle Scholar
  21. 21.
    Varshavskii, Yu. and Cherkasova, T.G., Zh. Neorg. Khim., 1967, vol. 12, p. 1709.Google Scholar
  22. 22.
    Organikum. Organisch-chemisches Grundpraktikum, Wienheim: Wiley, 2004, 22nd edn. Translated under the title Organikum, Moscow: Mir, 2008, vol. 2.Google Scholar
  23. 23.
    Wu, D.H., Chen, A.D., and Johnson, C.S., J. Magn. Reson., Ser. A, 1995, vol. 115, p. 260.CrossRefGoogle Scholar
  24. 24.
    Kerssebaum, R., DOSY and Diffusion by NMR in Users Guide for XWinNMR 3.5, Version 1, Rheinstetten, Germany Bruker BioSpin GmbH, 2002.Google Scholar
  25. 25.
    Bruckner, C., Karunaratne, V., Rettig, S.J., and Dolphin, D., Can. J. Chem., 1996, vol. 74, p. 2182.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. A. Leushina
    • 1
  • D. N. Gorbunov
    • 1
  • D. A. Cheshkov
    • 2
  • T. S. Kuchinskaya
    • 1
  • A. V. Anisimov
    • 1
  • A. L. Maksimov
    • 1
    • 3
  • M. V. Terenina
    • 1
  • A. V. Khoroshutin
    • 1
  • E. A. Karakhanov
    • 1
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.State Research Institute of Chemistry and Technology of Organoelemental CompoundsMoscowRussia
  3. 3.Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations