Russian Journal of Organic Chemistry

, Volume 52, Issue 11, pp 1610–1615 | Cite as

Dehydrogenation of 1-aryl(hetaryl)-1,2,3,4-tetrahydro-9H-β-carboline-3-carboxylic acids and their esters with dimethyl sulfoxide

  • M. G. Abramyants
  • D. A. Lomov
  • T. I. Zavyazkina


Oxidative dehydrogenation of 1-aryl(hetaryl)-1,2,3,4-tetrahydro-9Н-β-carboline-3-carboxylic acids derivatives with dimethyl sulfoxide leads to the formation of 1-aryl(hetaryl)-9Н-β-carbolines. Simultaneously with the dehydrogenation decarboxylation occurs. At the oxidation with dimethyl sulfoxide of methyl 1-aryl (hetaryl)-1,2,3,4-tetrahydro-9Н-β-carboline-3-carboxylicates methyl 1-aryl(hetaryl)-9Н-β-carboline-3-carboxylates formed whose hydrolysis afforded the corresponding 1-aryl(hetaryl)-9Н-β-carboline-3-carboxylic acids.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pfitzner, K.E. and Moffatt, J.G., J. Am. Chem. Soc., 1963, vol. 85, p. 3027.Google Scholar
  2. 2.
    Omura, K. and Swern, D., Tetrahedron, 1978, vol. 34, p. 1651.CrossRefGoogle Scholar
  3. 3.
    Sanz, R., Aguado, R., Pedrosa, M.R., and Arnaiz, F.J., Synthesis, 2002, vol. 7, p. 856.CrossRefGoogle Scholar
  4. 4.
    Le, H.V. and Ganem, B., Org. Lett., 2011, vol. 13, p. 2584.CrossRefGoogle Scholar
  5. 5.
    Mupparapu, N., Khan, S., Battula, S., Kushwaha, M., Gupta, A.P., Ahmed, Q.N., and Vishwakarma, R.A., Org. Lett., 2014, vol. 16, p. 1152.CrossRefGoogle Scholar
  6. 6.
    Wu, X., Gao, Q., Liu, S., and Wu, A., Org. Lett., 2014, vol. 16, p. 2888.CrossRefGoogle Scholar
  7. 7.
    Lomov, D.A., Abramyants, M.G., Astashkina, N.V., Korotkikh, N.I., and Gres’ko, S.V., Russ. J. Org. Chem., 2014, vol. 50, p. 1039.CrossRefGoogle Scholar
  8. 8.
    Ungemach, F., Soerens, D., Weber, R., DiPierro, M., Campos, O., Mokry, P., Cook, J.M., and Silverton, J.V., J. Am. Chem. Soc., 1980, vol. 102, p. 6976.CrossRefGoogle Scholar
  9. 9.
    Toth, G., Szantay, J.C., Kalaus, G., Thaler, G., and Snatzke, G., J. Chem. Soc., Perkin. Trans. 2, 1989, p. 1849.Google Scholar
  10. 10.
    Bailey, P.D. and Hollinshead, S.P., J. Chem. Soc. Chem. Commun., 1985, p. 1575.Google Scholar
  11. 11.
    Braibanti, A., Dallavalle, F., Leporati, E., and Mori, G., J. Chem. Soc., Dalton Trans., 1973, p. 323.Google Scholar
  12. 12.
    Organikum, Moscow: Mir, 2008, vol. 2, p. 76.Google Scholar
  13. 13.
    Organikum, Moscow: Mir, 2008, vol. 2, p. 93.Google Scholar
  14. 14.
    Soerens, D., Sandrin, J., Ungemach, F., Mokry, P., Wu, G.S., Yamanaka, E., Hutchins, L., DiPierro, M., and Cook, J.M., J. Org. Chem., 1979, vol. 44, p. 535.CrossRefGoogle Scholar
  15. 15.
    Snyder, H.R., Hansch, C.H., Katz, L., Parmerter, S.M., and Spaeth, E.C., J. Am. Chem. Soc., 1948, vol. 44, p. 219.CrossRefGoogle Scholar
  16. 16.
    Cain, M., Weber, R.W., Guzman, F., Cook, J.M., Barker, A.S., Rice, K.C., Crawley, N.J., Paul, S.M., and Scolnick, P., J. Med. Chem., 1982, vol. 25, p. 1081.CrossRefGoogle Scholar
  17. 17.
    Cain, M., Campos, O., Guzman, F., and Cook, J.M., J. Am. Chem. Soc., 1983, vol. 105, p. 907.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. G. Abramyants
    • 1
  • D. A. Lomov
    • 1
  • T. I. Zavyazkina
    • 1
  1. 1.Litvinenko Institute of Physical Organic and Coal ChemistryDonetskUkraine

Personalised recommendations