Advertisement

Russian Journal of Organic Chemistry

, Volume 52, Issue 10, pp 1400–1407 | Cite as

Reactions of aromatic compounds with xenon difluoride

Article
  • 100 Downloads

Abstract

Reactions of substituted benzenes C6H5R (R = Me, F, Cl, Br, CF3, NO2) with xenon difluoride in the presence of boron trifluoride–diethyl ether complex in weakly acidic (1,1,1,3,3-pentafluorobutane) and weakly basic media (acetonitrile) have been studied. These reactions lead to the formation of fluorobenzene derivatives FC6H4R (isomer mixture) together with isomeric difluorobenzenes and fluorinated and non-fluorinated biphenyls. The results have been compared with previously reported data obtained in other solvents using other catalysts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Filler, R., Isr. J. Chem., 1978, vol. 17, p. 71.CrossRefGoogle Scholar
  2. 2.
    Tius, M.A., Tetrahedron, 1995, vol. 51, p. 6605.CrossRefGoogle Scholar
  3. 3.
    Bardin, V.V. and Yagupol’skii, Yu.L., New Fluorinating Agents in Organic Synthesis, German, L.S. and Zemskov, S.V., Eds., Berlin: Springer, 1989, p. 1.Google Scholar
  4. 4.
    Yagupolskii, Y.L., Houben-Weyl Methods of Organic Chemistry, Stuttgart: Thieme, 2000, vol. E10 b/2, p. 219.Google Scholar
  5. 5.
    Zajc, B., Advances in Organic Synthesis: Modern Organofluorine Chemistry. Synthetic Aspects, Atta-ur-Rahman and Laali, K.K., Eds., Bentham Science, 2006, p. 61.Google Scholar
  6. 6.
    Frohn, H.J. and Bardin, V.V., Recent Developments in Carbocation and Onium Ion Chemistry, Laali, K.K., Ed., Washington: Am. Chem. Soc., 2007, p. 428.Google Scholar
  7. 7.
    Frohn, H.J. and Bardin, V.V., Organometallics, 2001, vol. 20, p. 4750.CrossRefGoogle Scholar
  8. 8.
    Brel, V.K., Pirguliyev, N.S., and Zefirov, N.S., Rus. Chem. Rev., 2001, vol. 70, p. 231.CrossRefGoogle Scholar
  9. 9.
    Tyrra, W. and Naumann, D., Organoxenon Compounds. Inorganic Chemistry Highlights, Meyer, G., Naumann, D., and Wesemann, L., Weinheim: Wiley-VCH, 2002, p. 297.Google Scholar
  10. 10.
    Yang, N.-C., Shieh, T.-C., Feit, E.D., and Chernick, C.L., J. Org. Chem., 1970, vol. 35, p. 4020.CrossRefGoogle Scholar
  11. 11.
    Hyman, H.H., Shaw, M.J., and Filler, R., J. Am. Chem. Soc., 1970, vol. 92, p. 6498.CrossRefGoogle Scholar
  12. 12.
    MacKenzie, D.R. and Fajer, J., J. Am. Chem. Soc., 1970, vol. 92, p. 4994.CrossRefGoogle Scholar
  13. 13.
    Shaw, M.J., Weil, J.A., Hyman, H.H., and Filler, R., J. Am. Chem. Soc., 1970, vol. 92, p. 5096.CrossRefGoogle Scholar
  14. 14.
    Shaw, M.J., Hyman, H.H., and Filler, R., J. Am. Chem. Soc., 1969, vol. 91, p. 1563.CrossRefGoogle Scholar
  15. 15.
    Anand, S.P., Quarterman, L.A., Christian, P.A., Hyman, H.H., and Filler, R., J. Org. Chem., 1975, vol. 40, p. 3796.CrossRefGoogle Scholar
  16. 16.
    Rabinovitz, M., Agranat, I., Selig, H., and Lin, C.-H., J. Fluorine Chem., 1977, vol. 10, p. 159.CrossRefGoogle Scholar
  17. 17.
    Fedorov, A.E., Zubarev, A.A., Mortikov, V.Yu., Rodinovskaya, L.A., and Shestopalov, A.M., Russ. Chem. Bull., Int. Ed., 2015, vol. 64, p. 1049.CrossRefGoogle Scholar
  18. 18.
    Maletina, I.I., Orda, V.V., Aleinikov, N.N., Korsunskii, B.L., and Yagupol’skii, L.M., Zh. Org. Khim., 1976, vol. 12, p. 1371.Google Scholar
  19. 19.
    Zhdankin, V.V., Sci. Synth., 2007, vol. 31, p. 164.Google Scholar
  20. 20.
    Zhdankin, V.V. and Stang, P.J., Chem. Rev., 2008, vol. 108, p. 5299.CrossRefGoogle Scholar
  21. 21.
    Zhdankin, V.V. and Stang, P.J., Chem. Rev., 2002, vol. 102, p. 2523.CrossRefGoogle Scholar
  22. 22.
    Gibson, J.A., Marat, R.K., and Janzen, A.F., Can. J. Chem., 1975, vol. 53, p. 3044.CrossRefGoogle Scholar
  23. 23.
    Zupan, M. and Pollak, A., J. Fluorine Chem., 1976, vol. 7, p. 445.CrossRefGoogle Scholar
  24. 24.
    Gregorcic, A. and Zupan, M., Bull. Chem. Soc. Jpn., 1977, vol. 50, p. 517.CrossRefGoogle Scholar
  25. 25.
    Dukat, W.W., Holloway, J.H., Hope, E.G., Townson, P.J., and Powell, R.L., J. Fluorine Chem., 1993, vol. 62, p. 293.CrossRefGoogle Scholar
  26. 26.
    Frohn, H.-J., Adonin, N.Y., and Bardin, V.V., Z. Anorg. Allg. Chem., 2003, vol. 629, p. 2499.CrossRefGoogle Scholar
  27. 27.
    Lothian, A.P. and Ramsden, C.A., Synlett, 1993, p. 753.Google Scholar
  28. 28.
    Ramsden, C.A. and Smith, R.G., J. Am. Chem. Soc., 1998, vol. 120, p. 6842.CrossRefGoogle Scholar
  29. 29.
    Turkina, M.Ya. and Gragerov, I.P., Zh. Org. Khim., 1975, vol. 11, p. 340.Google Scholar
  30. 30.
    Bardin, V.V. and Frohn, H.J., J. Fluorine Chem., 1998, vol. 90, p. 93.CrossRefGoogle Scholar
  31. 31.
    Bardin, V.V., Shchegoleva, L.N., and Frohn, H.J., J. Fluorine Chem., 1996, vol. 77, p. 153.CrossRefGoogle Scholar
  32. 32.
    Laubengayer, A.W. and Sears, D.S., J. Am. Chem. Soc., 1945, vol. 67, p. 164.CrossRefGoogle Scholar
  33. 33.
    Berger, S., Braun, S., and Kalinowski, H.-O., NMRSpekroskopie von Nichtmetallen, Stuttgart: Thieme, 1994, vol. 4, p. 39.Google Scholar
  34. 34.
    Dubbaka, S.R., Narreddula, V.R., Gadde, S., and Mathew, T., Tetrahedron, 2014, vol. 70, p. 9676.CrossRefGoogle Scholar
  35. 35.
    Momota, K., Yonezawa, T., Mukai, K., and Morita, M., J. Fluorine Chem., 1998, vol. 87, p. 173.CrossRefGoogle Scholar
  36. 36.
    Olah, G.A. and Kiovsky, T.E., J. Am. Chem. Soc., 1968, vol. 90, p. 2583.CrossRefGoogle Scholar
  37. 37.
    Kerr, C.A., Quinn, K.J., and Rae, I.D., Aust. J. Chem., 1980, vol. 33, p. 2627.CrossRefGoogle Scholar
  38. 38.
    Weigert, F.J. and Davis, R.F., J. Fluorine Chem., 1993, vol. 63, p. 69.CrossRefGoogle Scholar
  39. 39.
    Dolbier, W.R., Guide to Fluorine NMR for Organic Chemists, Hoboken NJ: Wiley, 2009, p. 75.CrossRefGoogle Scholar
  40. 40.
    Bolton, R. and Owen, E.S.E., J. Fluorine Chem., 1990, vol. 46, p. 393.CrossRefGoogle Scholar
  41. 41.
    Chambers, R.D., Hutchinson, J., Sparrowhawk, M.E., Sandford, G., Moilliet, J.S., and Thomson, J., J. Fluorine Chem., 2000, vol. 102, p. 169.CrossRefGoogle Scholar
  42. 42.
    Olah, G.A. and Mo, Y.K., J. Org. Chem., 1973, vol. 38, p. 2686.CrossRefGoogle Scholar
  43. 43.
    Schaefer, T., Niemczura, W., Wong, C.-M., and Marat, K., Can. J. Chem., 1979, vol. 57, p. 807.CrossRefGoogle Scholar
  44. 44.
    Momota, K., Yonezawa, T., Hayakawa, Y., Kato, K., Morita, M., and Matsuda, Y., J. Appl. Electrochem., 1995, vol. 25, p. 651.CrossRefGoogle Scholar
  45. 45.
    Zweig, A., Fischer, R.G., and Lancaster, J.E., J. Org. Chem., 1980, vol. 45, p. 3597.CrossRefGoogle Scholar
  46. 46.
    Selivanova, G.A., Starichenko, V.F., and Shteingarts, V.D., Russ. J. Org. Chem., 1995, vol. 31, p. 200.Google Scholar
  47. 47.
    Lv, H.B., Cai, Y.B., and Zhang, J.L., Angew. Chem., Int. Ed., 2013, vol. 52, p. 3203.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations